Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cancer Sci ; 109(11): 3591-3601, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30142229

RESUMEN

Gastrointestinal stromal tumor (GIST) is a type of KIT-driven cancer. KIT gene mutations are found in approximately 80% of GISTs, and most of these mutations occur in exon 9 and exon 11. Imatinib has been successfully used as a first-line treatment for advanced GIST, with a significant improvement in progression-free survival (PFS) and overall survival. However, disease progression might develop due to primary or secondary resistance to imatinib. Sunitinib and regorafenib have been approved as second- and third-line treatments for advanced GIST patients, with median PFS values of 6.8 and 4.8 months, respectively. However, these relatively modest improvements in PFS underscore the need for more effective KIT inhibitors. BPR1J373 is a multitargeted kinase inhibitor that has been shown to inhibit the proliferation of KIT-driven acute myeloid leukemia cells in vitro and in vivo. In this study, we found that BPR1J373 inhibited proliferation and induced apoptosis by targeting KIT in GIST cells with KIT gene mutations. BPR1J373 also induced cell cycle arrest and senescent change in KIT-mutant GIST48 cells, probably by targeting aurora kinase A. In the KIT-null COS-1 cell-based system, BPR1J373 effectively inhibited KIT with single or double mutations of KIT developed in GIST. The antiproliferative effect was also consistently evident in GIST430 tumor-grafted mice. The results suggest that BPR1J373 could be a potential anticancer drug for GIST and deserves further investigation for clinical applications.


Asunto(s)
Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas c-kit/genética , Pirimidinas/administración & dosificación , Animales , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Tumores del Estroma Gastrointestinal/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Bioconjug Chem ; 28(7): 1878-1892, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28581724

RESUMEN

A series of zinc(II) dipicolylamine (ZnDPA)-based drug conjugates have been synthesized to probe the potential of phosphatidylserine (PS) as a new antigen for small molecule drug conjugate (SMDC) development. Using in vitro cytotoxicity and plasma stability studies, PS-binding assay, in vivo pharmacokinetic studies, and maximum tolerated dose profiles, we provided a roadmap and the key parameters required for the development of the ZnDPA based drug conjugate. In particular, conjugate 24 induced tumor regression in the COLO 205 xenograft model and exhibited a more potent antitumor effect with a 70% reduction of cytotoxic payload compared to that of the marketed irinotecan when dosed at the same regimen. In addition to the validation of PS as an effective pharmacodelivery target for SMDC, our work also provided the foundation that, if applicable, a variety of therapeutic agents could be conjugated in the same manner to treat other PS-associated diseases.


Asunto(s)
Antineoplásicos/farmacocinética , Inmunoconjugados/uso terapéutico , Terapia Molecular Dirigida/métodos , Compuestos Organometálicos/inmunología , Fosfatidilserinas/inmunología , Ácidos Picolínicos/inmunología , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/farmacología , Fosfatidilserinas/metabolismo , Ácidos Picolínicos/síntesis química , Ácidos Picolínicos/farmacología , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Antimicrob Agents Chemother ; 57(2): 723-33, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23165461

RESUMEN

Hepatitis C virus (HCV), a member of the Flaviviridae family, affects approximately 3% of the world's population and is becoming the leading cause of liver disease in the world. Therefore, the development of novel or more effective treatment strategies to treat chronic HCV infection is urgently needed. In our previous study, we identified a potential HCV NS5A inhibitor, BP008. After further systemic optimization, we discovered a more potent HCV inhibitor, DBPR110. DBPR110 reduced the reporter expression of the HCV1b replicon with a 50% effective concentration (EC(50)) and a selective index value of 3.9 ± 0.9 pM and >12,800,000, respectively. DBPR110 reduced HCV2a replicon activity with an EC(50) and a selective index value of 228.8 ± 98.4 pM and >173,130, respectively. Sequencing analyses of several individual clones derived from the DBPR110-resistant RNAs purified from cells harboring genotype 1b and 2a HCV replicons revealed that amino acid substitutions mainly within the N-terminal region (domain I) of NS5A were associated with decreased inhibitor susceptibility. P58L/T and Y93H/N in genotype 1b and T24A, P58L, and Y93H in the genotype 2a replicon were the key substitutions for resistance selection. In the 1b replicon, V153M, M202L, and M265V play a compensatory role in replication and drug resistance. Moreover, DBPR110 displayed synergistic effects with alpha interferon (IFN-α), an NS3 protease inhibitor, and an NS5B polymerase inhibitor. In summary, our results present an effective small-molecule inhibitor, DBPR110, that potentially targets HCV NS5A. DBPR110 could be part of a more effective therapeutic strategy for HCV in the future.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/genética , Hepatitis C Crónica/tratamiento farmacológico , Pirrolidinas/farmacología , Tiazoles/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Sustitución de Aminoácidos , Antivirales/química , Línea Celular Tumoral , Genotipo , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Hepatitis C Crónica/virología , Humanos , Interferón-alfa/farmacología , Mutación , Unión Proteica , ARN Viral/análisis , Replicón , Análisis de Secuencia de ARN , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
5.
J Med Chem ; 66(4): 2566-2588, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36749735

RESUMEN

The development of orally bioavailable, furanopyrimidine-based double-mutant (L858R/T790M) EGFR inhibitors is described. First, selectivity for mutant EGFR was accomplished by replacing the (S)-2-phenylglycinol moiety of 12 with either an ethanol or an alkyl substituent. Then, the cellular potency and physicochemical properties were optimized through insights from molecular modeling studies by implanting various solubilizing groups in phenyl rings A and B. Optimized lead 52 shows 8-fold selective inhibition of H1975 (EGFRL858R/T790M overexpressing) cancer cells over A431 (EGFRWT overexpressing) cancer cells; western blot analysis further confirmed EGFR mutant-selective target modulation inside the cancer cells by 52. Notably, 52 displayed in vivo antitumor effects in two different mouse xenograft models (BaF3 transfected with mutant EGFR and H1975 tumors) with TGI = 74.9 and 97.5% after oral administration (F = 27%), respectively. With an extraordinary kinome selectivity (S(10) score of 0.017), 52 undergoes detailed preclinical development.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Pirimidinas , Animales , Humanos , Ratones , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Administración Oral , Pirimidinas/administración & dosificación , Pirimidinas/farmacología
6.
Antimicrob Agents Chemother ; 56(1): 44-53, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22006008

RESUMEN

Hepatitis C virus (HCV) is a global health problem, affecting approximately 3% of the world's population. The standard treatment for HCV infection is often poorly tolerated and ineffective. Therefore, the development of novel or more effective treatment strategies to treat chronic HCV infection is urgently needed. In this report, BP008, a potent small-molecule inhibitor of HCV replication, was developed from a class of compounds with thiazol core structures by means of utilizing a cell-based HCV replicon system. The compound reduced the reporter expression of the HCV1b replicon with a 50% effective concentration (EC(50)) and selective index value of 4.1 ± 0.7 nM and >12,195, respectively. Sequencing analyses of several individual clones derived from BP008-resistant RNAs purified from cells harboring HCV1b replicon revealed that amino acid substitutions mainly within the N-terminal region (domain I) of NS5A were associated with decreased inhibitor susceptibility. Q24L, P58S, and Y93H are the key substitutions for resistance selection; F149L and V153M play the compensatory role in the replication and drug resistance processes. Moreover, BP008 displayed synergistic effects with alpha interferon (IFN-α), NS3 protease inhibitor, and NS5B polymerase inhibitor, as well as good oral bioavailability in SD rats and favorable exposure in rat liver. In summary, our results pointed to an effective small-molecule inhibitor, BP008, that potentially targets HCV NS5A. BP008 can be considered a part of a more effective therapeutic strategy for HCV in the future.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/efectos de los fármacos , Hepacivirus/efectos de los fármacos , Hepatitis C Crónica/tratamiento farmacológico , Tiazoles/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Genes Reporteros , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatitis C Crónica/virología , Hepatocitos/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Interferón-alfa/farmacología , Masculino , Ratas , Replicón , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
7.
Invest New Drugs ; 30(1): 164-75, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20890633

RESUMEN

Designed from a high throughput screened hit compound, novel 2-amino-1-thiazolyl imidazoles were synthesized and demonstrated cytotoxicity against human cancer cells. 1-(4-Phenylthiazol-2-yl)-4-(thiophen-2-yl)-1H-imidazol-2-amine (compound 2), a 2-amino-1-thiazolyl imidazole, inhibited tubulin polymerization, interacted with the colchicine-binding sites of tubulins, and caused cell cycle arrest at the G(2)/M phase in human gastric cancer cells. Disruption of the microtubule structure in cancer cells by compound 2 was also observed. Compound 2 concentration-dependently inhibited the proliferation of cancer cells in histocultured human gastric and colorectal tumors. Given orally, compound 2 prolonged the lifespans of leukemia mice intraperitoneally inoculated with the murine P388 leukemic cells. We report 2-amino-1-thiazolyl imidazoles as a novel class of orally active microtubule-destabilizing anticancer agents.


Asunto(s)
Antineoplásicos/administración & dosificación , Imidazoles/administración & dosificación , Neoplasias Experimentales/tratamiento farmacológico , Tiazoles/administración & dosificación , Moduladores de Tubulina/administración & dosificación , Administración Oral , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Unión Competitiva , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colchicina/metabolismo , Relación Dosis-Respuesta a Droga , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Imidazoles/síntesis química , Imidazoles/metabolismo , Concentración 50 Inhibidora , Masculino , Ratones , Ratones Endogámicos DBA , Ratones Desnudos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Estructura Molecular , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/metabolismo , Factores de Tiempo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/metabolismo
8.
mBio ; 13(1): e0271721, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35038927

RESUMEN

Enterovirus infections can cause severe complications, such as poliomyelitis, encephalitis, myocarditis, meningitis, neurological pulmonary edema, and even death. Here, we used genome-wide CRISPR screens to gain new insight into the mechanism by which enteroviruses co-opt host pathways to potentiate replication and propagation. We found that acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) is involved in viral replication organelle formation. ACSL4 is a key component of ferroptosis, an iron-dependent, nonapoptotic programmed cell death. Our results indicated that enteroviruses and coronaviruses can induce ferroptosis via ACSL4. Most importantly, ferroptosis inhibitors, including two FDA-approved drugs, rosiglitazone (ROSI; ACSL4 inhibitor) and pioglitazone (PIO; ACSL4 inhibitor), decreased the viral load of human enteroviruses and coronaviruses, suggesting that ACSL4 is a target for counteracting viral infection. IMPORTANCE We provide the first evidence for the role of ACSL4 in enterovirus replication organelle formation. Moreover, both enteroviruses and coronaviruses induce ferroptosis via ACSL4. These findings establish a novel regulatory mechanism for viral replication. The inhibition of ACSL4 by ferroptosis inhibitors can reduce viral yields of enteroviruses and coronaviruses, including SARS-CoV-2, implying that ACSL4-mediated ferroptosis is a promising therapeutic target for viral diseases.


Asunto(s)
COVID-19 , Infecciones por Enterovirus , Enterovirus , Ferroptosis , Humanos , Coenzima A Ligasas/metabolismo , SARS-CoV-2/metabolismo , Replicación Viral , Orgánulos/metabolismo
9.
Pharmaceutics ; 14(7)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35890212

RESUMEN

Ligand-targeting drug conjugates are a class of clinically validated biopharmaceutical drugs constructed by conjugating cytotoxic drugs with specific disease antigen targeting ligands through appropriate linkers. The integrated linker-drug motif embedded within such a system can prevent the premature release during systemic circulation, thereby allowing the targeting ligand to engage with the disease antigen and selective accumulation. We have designed and synthesized new thioester-linked maytansinoid conjugates. By performing in vitro cytotoxicity, targeting ligand binding assay, and in vivo pharmacokinetic studies, we investigated the utility of this new linker-drug moiety in the small molecule drug conjugate (SMDC) system. In particular, we conjugated the thioester-linked maytansinoids to the phosphatidylserine-targeting small molecule zinc dipicolylamine and showed that Zn8_DM1 induced tumor regression in the HCC1806 triple-negative breast cancer xenograft model. Moreover, in a spontaneous sorafenib-resistant liver cancer model, Zn8_DM1 exhibited potent antitumor growth efficacy. From quantitative mRNA analysis of Zn8_DM1 treated-tumor tissues, we observed the elevation of gene expressions associated with a "hot inflamed tumor" state. With the identification and validation of a plethora of cancer-associated antigens in the "omics" era, this work provided the insight that antibody- or small molecule-based targeting ligands can be conjugated similarly to generate new ligand-targeting drug conjugates.

10.
J Med Chem ; 65(19): 12802-12824, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36153998

RESUMEN

Ligand-targeting drug delivery systems have made significant strides for disease treatments with numerous clinical approvals in this era of precision medicine. Herein, we report a class of small molecule-based immune checkpoint-targeting maytansinoid conjugates. From the ligand targeting ability, pharmacokinetics profiling, in vivo anti-pancreatic cancer, triple-negative breast cancer, and sorafenib-resistant liver cancer efficacies with quantitative mRNA analysis of treated-tumor tissues, we demonstrated that conjugate 40a not only induced lasting regression of tumor growth, but it also rejuvenated the once immunosuppressive tumor microenvironment to an "inflamed hot tumor" with significant elevation of gene expressions that were not accessible in the vehicle-treated tumor. In turn, the immune checkpoint-targeting small molecule drug conjugate from this work represents a new pharmacodelivery strategy that can be expanded with combination therapy with existing immune-oncology treatment options.


Asunto(s)
Fosfatidilserinas , Neoplasias de la Mama Triple Negativas , Humanos , Ligandos , ARN Mensajero , Sorafenib/farmacología , Sorafenib/uso terapéutico , Microambiente Tumoral
11.
Bioorg Med Chem Lett ; 21(7): 1948-52, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21356589

RESUMEN

A series of isatin-ß-thiosemicarbazones have been designed and evaluated for antiviral activity against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in a plaque reduction assay. Their cytotoxicity was examined using human rhabdomyosarcoma cells (RD cells). Several derivatives of isatin-ß-thiosemicarbazone exhibited significant and selective antiviral activity with low cytotoxicity. It was found that the thiourea group at thiosemicarbazone and the NH functionality at isatin were essential for their antiherpetic activity. The synthesis and structure-activity relationship studies are presented.


Asunto(s)
Antivirales/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 2/efectos de los fármacos , Isatina/análogos & derivados , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isatina/farmacología
12.
Nanomaterials (Basel) ; 11(7)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34361230

RESUMEN

Integrative medicine comprising a tumor-associated antigen vaccine and chemotherapeutic regimens has provided new insights into cancer therapy. In this study, the AB-type diblock copolymers poly(ethylene glycol)-polylactide (PEG-PLA) were subjected to the dispersion of poorly water-soluble molecules in aqueous solutions. The physicochemical behavior of the chemotherapeutic agent DBPR114 in the PEG-PLA-polymeric aqueous solution was investigated by dynamic light scattering (DLS) technology. In vitro cell culture indicated that replacing the organic solvent DMSO with PEG-PLA polymeric micelles could maintain the anti-proliferative effect of DBPR114 on leukemia cell lines. A murine tumor-associated antigen vaccine model was established in tumor-bearing mice to determine the effectiveness of these formulas in inducing tumor regression. The results demonstrated that the therapeutic treatments effectively reinforced each other via co-delivery of antitumor drug/antigen agents to synergistically integrate the efficacy of cancer therapy. Our findings support the potential use of polymeric micellar systems for aqueous solubilization and expansion of antitumor activity intrinsic to DBPR114 and tumor-associated antigen therapy.

13.
Biomed J ; 43(4): 368-374, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32563698

RESUMEN

BACKGROUND: New therapeutic options to address the ongoing coronavirus disease 2019 (COVID-19) pandemic are urgently needed. One possible strategy is the repurposing of existing drugs approved for other indications as antiviral agents for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Due to the commercial unavailability of SARS-CoV-2 drugs for treating COVID-19, we screened approximately 250 existing drugs or pharmacologically active compounds for their inhibitory activities against feline infectious peritonitis coronavirus (FIPV) and human coronavirus OC43 (HCoV-OC43), a human coronavirus in the same genus (Betacoronavirus) as SARS-CoV-2. METHODS: FIPV was proliferated in feline Fcwf-4 cells and HCoV-OC43 in human HCT-8 cells. Viral proliferation was assayed by visualization of cytopathic effects on the infected Fcwf-4 cells and immunofluorescent assay for detection of the nucleocapsid proteins of HCoV-OC43 in the HCT-8 cells. The concentrations (EC50) of each drug necessary to diminish viral activity to 50% of that for the untreated controls were determined. The viabilities of Fcwf-4 and HCT-8 cells were measured by crystal violet staining and MTS/PMS assay, respectively. RESULTS: Fifteen out of the 252 drugs or pharmacologically active compounds screened were found to be active against both FIPV and HCoV-OC43, with EC50 values ranging from 11 nM to 75 µM. They are all old drugs as follows, anisomycin, antimycin A, atovaquone, chloroquine, conivaptan, emetine, gemcitabine, homoharringtonine, niclosamide, nitazoxanide, oligomycin, salinomycin, tilorone, valinomycin, and vismodegib. CONCLUSION: All of the old drugs identified as having activity against FIPV and HCoV-OC43 have seen clinical use in their respective indications and are associated with known dosing schedules and adverse effect or toxicity profiles in humans. Those, when later confirmed to have an anti-viral effect on SARS-CoV-2, should be considered for immediate uses in COVID-19 patients.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/virología , Coronavirus Humano OC43/efectos de los fármacos , Reposicionamiento de Medicamentos/métodos , Humanos , Pandemias , Neumonía Viral/virología , SARS-CoV-2
14.
Biomed J ; 43(4): 355-362, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32426387

RESUMEN

Background: The ongoing COVID-19 pandemic has caused more than 193,825 deaths during the past few months. A quick-to-be-identified cure for the disease will be a therapeutic medicine that has prior use experiences in patients in order to resolve the current pandemic situation before it could become worsening. Artificial intelligence (AI) technology is hereby applied to identify the marketed drugs with potential for treating COVID-19. Methods: An AI platform was established to identify potential old drugs with anti-coronavirus activities by using two different learning databases; one consisted of the compounds reported or proven active against SARS-CoV, SARS-CoV-2, human immunodeficiency virus, influenza virus, and the other one containing the known 3C-like protease inhibitors. All AI predicted drugs were then tested for activities against a feline coronavirus in in vitro cell-based assay. These assay results were feedbacks to the AI system for relearning and thus to generate a modified AI model to search for old drugs again. Results: After a few runs of AI learning and prediction processes, the AI system identified 80 marketed drugs with potential. Among them, 8 drugs (bedaquiline, brequinar, celecoxib, clofazimine, conivaptan, gemcitabine, tolcapone, and vismodegib) showed in vitro activities against the proliferation of a feline infectious peritonitis (FIP) virus in Fcwf-4 cells. In addition, 5 other drugs (boceprevir, chloroquine, homoharringtonine, tilorone, and salinomycin) were also found active during the exercises of AI approaches. Conclusion: Having taken advantages of AI, we identified old drugs with activities against FIP coronavirus. Further studies are underway to demonstrate their activities against SARS-CoV-2 in vitro and in vivo at clinically achievable concentrations and doses. With prior use experiences in patients, these old drugs if proven active against SARS-CoV-2 can readily be applied for fighting COVID-19 pandemic.


Asunto(s)
Inteligencia Artificial , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Reposicionamiento de Medicamentos , Neumonía Viral/diagnóstico , Neumonía Viral/tratamiento farmacológico , Betacoronavirus , COVID-19 , Manejo de Datos , Humanos , Pandemias , Valor Predictivo de las Pruebas , SARS-CoV-2
15.
Bioorg Med Chem Lett ; 19(7): 1950-5, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19251415

RESUMEN

A series of thiourea derivatives were synthesized and their antiviral activity was evaluated in a cell-based HCV subgenomic replicon assay. SAR studies revealed that the chain length and the position of the alkyl linker largely influenced the in vitro anti-HCV activity of this class of potent antiviral agents. Among this series of compounds synthesized, the thiourea derivative with a six-carbon alkyl linker at the meta-position of the central phenyl ring (10) was identified as the most potent anti-HCV inhibitor (EC(50) = 0.047 microM) with a selectivity index of 596.


Asunto(s)
Antivirales/síntesis química , Hepacivirus/efectos de los fármacos , Tiourea/síntesis química , Antivirales/química , Antivirales/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Replicón/genética , Relación Estructura-Actividad , Tiourea/análogos & derivados , Tiourea/química , Tiourea/farmacología
16.
Bioorg Med Chem Lett ; 19(15): 4134-8, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19539472

RESUMEN

An efficient synthetic methodology to provide indole, 2,3-dihydro-indole, and 3,4-dihydro-2H-quinoline-1-carbothioic acid amide derivatives is described. These conformationally restricted heterobicyclic scaffolds were evaluated as a novel class of HCV inhibitors. Introduction of an acyl group at the NH(2) of the thiourea moiety has been found to enhance inhibitory activity. The chain length and the position of the alkyl group on the indoline aromatic ring markedly influenced anti-HCV activity. The indoline scaffold was more potent than the corresponding indole and tetrahydroquinoline scaffolds and analogue 31 displayed excellent activity (EC(50)=510nM) against HCV without significant cytotoxicity (CC(50) >50microM).


Asunto(s)
Antivirales/síntesis química , Hepacivirus/metabolismo , Hepatitis C/tratamiento farmacológico , Indoles/síntesis química , Quinolinas/síntesis química , Antivirales/farmacología , Línea Celular Tumoral , Química Farmacéutica/métodos , Diseño de Fármacos , Humanos , Indoles/farmacología , Modelos Químicos , Conformación Molecular , Estructura Molecular , Estructura Terciaria de Proteína , Quinolinas/química , Quinolinas/farmacología , Relación Estructura-Actividad , Proteínas no Estructurales Virales/química
17.
Bioorg Med Chem Lett ; 19(21): 6063-8, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19796940

RESUMEN

A novel class of arylthiourea HCV inhibitors bearing various functionalities, such as cyclic urea, cyclic thiourea, urea, and thiourea, on the alkyl linker were designed and synthesized. Herein we report the synthesis and structure-activity relationships (SARs) of this novel class of arylthiourea derivatives that showed potent inhibitory activities against HCV in the cell-based subgenomic HCV replicon assay. Among compounds tested, the new carbazole derivative 64, which has an eight-carbon linkage between the phenyl and carbazole rings and a tolyl group at the N-9 position of carbazole, was found to possess strong anti-HCV activity (EC50=0.031 microM), lower cytotoxicity (CC50 >50 microM), and higher selectivity index (SI >1612) compared to its derivatives.


Asunto(s)
Antivirales/síntesis química , Carbazoles/síntesis química , Hepacivirus/efectos de los fármacos , Tiourea/análogos & derivados , Antivirales/química , Antivirales/toxicidad , Carbazoles/química , Carbazoles/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Relación Estructura-Actividad , Tiourea/síntesis química , Tiourea/química , Tiourea/farmacología , Tiourea/toxicidad , Replicación Viral/efectos de los fármacos
18.
J Hematol Oncol ; 12(1): 138, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31847880

RESUMEN

BACKGROUND: Endothelial-to-mesenchymal transition (EndoMT) can provide a source of cancer-associated fibroblasts which contribute to desmoplasia of many malignancies including pancreatic ductal adenocarcinoma (PDAC). We investigated the clinical relevance of EndoMT in PDAC, and explored its underlying mechanism and therapeutic implication. METHODS: Expression levels of 29 long non-coding RNAs were analyzed from the cells undergoing EndoMT, and an EndoMT index was proposed to survey its clinical associations in the PDAC patients of The Cancer Genome Atlas database. The observed clinical correlation was further confirmed by a mouse model inoculated with EndoMT cells-involved PDAC cell grafts. In vitro co-culture with EndoMT cells or treatment with the conditioned medium were performed to explore the underlying mechanism. Because secreted HSP90α was involved, anti-HSP90α antibody was evaluated for its inhibitory efficacy against the EndoMT-involved PDAC tumor. RESULTS: A combination of low expressions of LOC340340, LOC101927256, and MNX1-AS1 was used as an EndoMT index. The clinical PDAC tissues with positive EndoMT index were significantly correlated with T4-staging and showed positive for M2-macrophage index. Our mouse model and in vitro cell-culture experiments revealed that HSP90α secreted by EndoMT cells could induce macrophage M2-polarization and more HSP90α secretion to promote PDAC tumor growth. Furthermore, anti-HSP90α antibody showed a potent therapeutic efficacy against the EndoMT and M2-macrophages-involved PDAC tumor growth. CONCLUSIONS: EndoMT cells can secrete HSP90α to harness HSP90α-overproducing M2-type macrophages to promote PDAC tumor growth, and such effect can be targeted and abolished by anti-HSP90α antibody.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/patología , Endotelio Vascular/patología , Transición Epitelial-Mesenquimal , Proteínas HSP90 de Choque Térmico/metabolismo , Macrófagos/patología , Neoplasias Pancreáticas/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Movimiento Celular , Proliferación Celular , Endotelio Vascular/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Humanos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Eur J Med Chem ; 167: 245-268, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30772607

RESUMEN

A medicinal chemistry program based on the small-molecule HCV NS5A inhibitor daclatasvir has led to the discovery of dimeric phenylthiazole compound 8, a novel and potent HCV NS5A inhibitor. The subsequent SAR studies and optimization revealed that the cycloalkyl amide derivatives 27a-29a exhibited superior potency against GT1b with GT1b EC50 values at picomolar concentration. Interestingly, high diastereospecificity for HCV inhibition was observed in this class with the (1R,2S,1'R,2'S) diastereomer displaying the highest GT1b inhibitory activity. The best inhibitor 27a was found to be 3-fold more potent (GT1b EC50 = 0.003 nM) than daclatasvir (GT1b EC50 = 0.009 nM) against GT1b, and no detectable in vitro cytotoxicity was observed (CC50 > 50 µM). Pharmacokinetic studies demonstrated that compound 27a had an excellent pharmacokinetic profiles with a superior oral exposure and desired bioavailability after oral administration in both rats and dogs, and therefore it was selected as a developmental candidate for the treatment of HCV infection.


Asunto(s)
Descubrimiento de Drogas , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Tiazoles/farmacocinética , Proteínas no Estructurales Virales/antagonistas & inhibidores , Amidas/química , Animales , Disponibilidad Biológica , Perros , Humanos , Ratas , Sialiltransferasas/antagonistas & inhibidores , Relación Estructura-Actividad , Tiazoles/química , Tiazoles/uso terapéutico
20.
Cancers (Basel) ; 11(6)2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141996

RESUMEN

Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related deaths worldwide. Sorafenib was the only U.S. Food and Drug Administration (FDA) approved drug for treating advanced HCC until recently, so development of new target therapy is urgently needed. In this study, we established a zebrafish drug screening platform and compared the therapeutic effects of two multiple tyrosine kinase inhibitors, 419S1 and 420S1, with Sorafenib. All three compounds exhibited anti-angiogenesis abilities in immersed fli1:EGFP transgenic embryos and the half inhibition concentration (IC50) was determined. 419S1 exhibited lower hepatoxicity and embryonic toxicity than 420S1 and Sorafenib, and the half lethal concentration (LC50) was determined. The therapeutic index (LC50/IC50) for 419S1 was much higher than for Sorafenib and 420S1. The compounds were either injected retro-orbitally or by oral gavage to adult transgenic zebrafish with HCC. The compounds not only rescued the pathological feature, but also reversed the expression levels of cell-cycle-related genes and protein levels of a proliferation marker. Using a patient-derived-xenograft assay, we found that the effectiveness of 419S1 and 420S1 in preventing liver cancer proliferation is better than that of Sorafenib. With integrated efforts and the advantage of the zebrafish platform, we can find more effective and safe drugs for HCC treatment and screen for personalized medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA