Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Headache Pain ; 23(1): 1, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979902

RESUMEN

BACKGROUND: Chronic migraine places a disabling burden on patients, which is extensively modeled by the nitroglycerin (NTG)-treated animal model. Although the NF-κB pathway is involved in an increase in CGRP levels and activation of the trigeminal system in the NTG model, the relationship between NTG and neuroinflammation remains unclear. This study aimed to optimize a chronic NTG rat model with hyperalgesia and the ethological capacity for estimating migraine therapies and to further explore the underlying mechanism of NTG-induced migraine. METHODS: Rats were administered different doses of NTG s.c. daily or every 2 d; 30 min and 2 h later, the mechanical threshold was tested. After 9 d, the rats were injected with EB or Cy5.5 for the permeability assay. The other animals were sacrificed, and then, brainstem and caudal trigeminal ganglion were removed to test CGRP, c-Fos and NOS activity; Cytokines levels in the tissue and serum were measured by ELISA; and NF-κB pathway and blood-brain barrier (BBB)-related indicators were analyzed using western blotting. Immunohistochemistry was performed to observe microglial polarization and IL-17A+ T cell migration in the medulla oblongata. RESULTS: NTG (10 mg/kg, s.c., every 2 d for a total of 5 injections) was the optimal condition, resulting in progressive hyperalgesia and migraine behavior. TNC neuroinflammation with increases in cytokines, CGRP and c-Fos and activation of the NF-κB pathway was observed, and these changes were alleviated by ibuprofen. Furthermore, NTG administration increased BBB permeability by altering the levels functional proteins (RAGE, LRP1, AQP4 and MFSD2A) and structural proteins (ZO-1, Occludin and VE-cadherin-2) to increase peripheral IL-17A permeation into the medulla oblongata, activating microglia and neuroinflammation, and eventually causing hyperalgesia and migraine attack. CONCLUSIONS: This study confirmed that NTG (10 mg/kg, s.c., every 2 d for a total of 5 injections) was the optimal condition to provoke migraine, resulting in mechanical hyperalgesia and observable migraine-like behavior. Furthermore, IL-17A crossed the blood-brain barrier into the medulla oblongata, triggering TNC activation through microglia-mediated neuroinflammation. This process was a novel mechanism in NTG-induced chronic migraine, suggesting that IL-17A might be a novel target in the treatment of migraine.


Asunto(s)
Trastornos Migrañosos , Nitroglicerina , Animales , Barrera Hematoencefálica , Modelos Animales de Enfermedad , Humanos , Interleucina-17 , Trastornos Migrañosos/inducido químicamente , Enfermedades Neuroinflamatorias , Nitroglicerina/toxicidad , Ratas
2.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638571

RESUMEN

Bone defects cause significant socio-economic costs worldwide, while the clinical "gold standard" of bone repair, the autologous bone graft, has limitations including limited graft supply, secondary injury, chronic pain and infection. Therefore, to reduce surgical complexity and speed up bone healing, innovative therapies are needed. Bone tissue engineering (BTE), a new cross-disciplinary science arisen in the 21st century, creates artificial environments specially constructed to facilitate bone regeneration and growth. By combining stem cells, scaffolds and growth factors, BTE fabricates biological substitutes to restore the functions of injured bone. Although BTE has made many valuable achievements, there remain some unsolved challenges. In this review, the latest research and application of stem cells, scaffolds, and growth factors in BTE are summarized with the aim of providing references for the clinical application of BTE.


Asunto(s)
Materiales Biocompatibles/química , Huesos/efectos de los fármacos , Ingeniería de Tejidos/métodos , Investigación Biomédica Traslacional/métodos , Animales , Regeneración Ósea/efectos de los fármacos , Humanos , Osteogénesis/efectos de los fármacos , Células Madre/fisiología , Andamios del Tejido/química
3.
Molecules ; 26(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069333

RESUMEN

Husk and pellicle as the agri-food waste in the walnut-product industry are in soaring demand because of their rich polyphenol content. This study investigated the differential compounds related to walnut polyphenol between husk and pellicle during fruit development stage. By using ultra-high performance liquid chromatography-quadrupole-orbitrap (UHPLC-Q-Orbitrap), a total of 110 bioactive components, including hydrolysable tannins, flavonoids, phenolic acids and quinones, were tentatively identified, 33 of which were different between husk and pellicle. The trend of dynamic content of 16 polyphenols was clarified during walnut development stage by high-performance liquid chromatography (HPLC). This is the first time to comprehensive identification of phenolic compounds in walnut husk and pellicle, and our results indicated that the pellicle is a rich resource of polyphenols. The dynamic trend of some polyphenols was consistent with total phenols. The comprehensive characterization of walnut polyphenol and quantification of main phenolic compounds will be beneficial for understanding the potential application value of walnut and for exploiting its metabolism pathway.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Juglans/química , Espectrometría de Masas/métodos , Fenoles/análisis , Flavonoides/análisis , Quinonas/análisis , Taninos/análisis
4.
Toxics ; 10(11)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36355956

RESUMEN

Hepatotoxicity brought on by acetaminophen (APAP) is significantly impacted by mitochondrial dysfunction. Mitophagy, particularly PINK1-mediated mitophagy, maintains the stability of cell function by eliminating damaged mitochondria. One of the most prevalent dietary polyphenols, chlorogenic acid (CGA), has been shown to have hepatoprotective properties. It is yet unknown, nevertheless, whether its defense against hepatocyte apoptosis involves triggering PINK1-mediated mitophagy. In vitro and in vivo models of APAP-induced hepatotoxicity were established to observe CGA's effect and mechanism in preventing hepatotoxicity in the present study. Serum aminotransferase levels, mouse liver histology, and the survival rate of HepG2 cells and mice were also assessed. The outcomes showed that CGA could reduce the activities of serum enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH), and alleviate liver injury in mice. It could also significantly increase the cell viability of HepG2 cells and the 24-h survival rate of mice. TUNEL labeling and Western blotting were used to identify the hepatocyte apoptosis level. According to data, CGA could significantly reduce liver cell apoptosis in vivo. Additionally, Tom20 and LC3II colocalization in mitochondria may be facilitated by CGA. CGA considerably increased the levels of genes and proteins associated with mitophagy (PINK1, Parkin, LC3II/LC3I), while considerably decreasing the levels of p62 and Tom20, suggesting that it might activate PINK1/Parkin-mediated mitophagy in APAP-induced liver damage. Additionally, the protection of CGA was reduced when PINK1 was knocked down by siPINK1 in HepG2 cells, and it did not upregulate mitophagy-related proteins (PINK1, Parkin, LC3II/LC3I). In conclusion, our findings revealed that long-term consumption of food-derived CGA could prevent APAP hepatotoxicity via increasing PINK1-dependent mitophagy and inhibiting hepatocyte apoptosis.

5.
Exp Gerontol ; 151: 111400, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33974937

RESUMEN

Shenqi Yizhi Granule (SYG), a modern preparation herbs based on the theory of traditional Chinese medicine, has been proved to be effective against Alzheimer's disease in clinical trials, APP/PS1 mice and 5XFAD transgenic mice. But the underlying mechanism remains ambiguous. Increasing evidence supports the crucial role of astrocyte reactivity in the pathogenesis of Alzheimer's disease (AD). In the present study, we attempt to explore the underlying mechanisms of SYG from astrocyte reactivity in Aß1-42-induced rat model of Alzheimer's disease. After SYG treatment, the impairment of learning and memory induced by Aß1-42 was significantly improved and the hippocampal neuron damages were alleviated. Additionally, the activity of glutamine synthetase and the concentration of glutamate, which might be involved in the cognitive dysfunctions, were outstandingly reduced. Meanwhile, the astrocyte reactivity was also remarkably inhibited. The expressions of JAK2 and STAT3, key proteins in the JAK2/STAT3 signaling pathway that is tightly associated with reactive astrocytes, were clearly attenuated, too. Collectively, our data demonstrate that SYG might exert protective effects on cognitive impairment induced by amyloid-ß oligomers via inhibition of astrocyte reactivity regulated by the JAK2/STAT3 signaling pathway. It may be a potential therapeutic for cognitive dysfunctions in many neurological and psychiatric disorders such as Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Medicamentos Herbarios Chinos , Alpinia , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/toxicidad , Animales , Astrocitos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Janus Quinasa 2 , Ratones , Ratones Transgénicos , Extractos Vegetales , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA