Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Complement Altern Med ; 18(1): 212, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986685

RESUMEN

BACKGROUND: Liuweiwuling tablets (LWWL) are an herbal product that exerts remarkable effects on liver protection and aminotransferase levels, and they have been approved by the Chinese State Food and Drug Administration (CFDA). Clinical studies have found that LWWL can inhibit collagen production and reduce the levels of liver fibrosis markers in the serum. Thus, LWWL is expected to have beneficial effects in the treatment of liver fibrosis. The purpose of this study was to evaluate the pharmacological effects of LWWL. METHODS: Hepatic fibrosis was induced in rats via carbon tetrachloride (CCl4) treatment. The rats were treated twice weekly for 8 weeks with either 2 mL·kg- 1 body weight of a 50% solution of CCl4 in olive oil or olive oil alone by oral gavage. A subset of rats received daily intraperitoneal injections of either colchicine (0.2 mg/kg per day), LWWL (0.4, 1.6, or 6.4 g/kg per day), or vehicle (N = 12 for all groups) during weeks 9-12. The rats were sacrificed after 12 weeks. Pathological changes in hepatic tissue were examined using hematoxylin and eosin (H&E) and Sirius Red staining. Immunohistochemistry was performed to observe α-smooth muscle actin (α-SMA) and collagen type I (collagen I) protein expression. Western blotting was also used to detect α-SMA protein expression. Real-time quantitative reverse-transcription polymerase chain reaction (RT-qPCR) was used to detect transforming growth factor-1 (TGF-ß1), platelet-derived growth factor (PDGF), tissue inhibitor of metalloproteinase-1 (TIMP1), and tissue inhibitor of metalloproteinase-2 (TIMP2) mRNA expression. RESULTS: LWWL significantly reversed histological fibrosis and liver injury, reduced the hydroxyproline content in liver tissue, and decreased α-SMA and collagen I expression. LWWL also suppressed hepatic stellate cell (HSC) activation by reducing the expression of the profibrogenic factors TGF-ß1 and PDGF. The expression levels of TIMP1 and TIMP2, which regulate extracellular matrix (ECM) degradation, were decreased after CCl4 injury in LWWL-treated rats. CONCLUSIONS: These data suggest that LWWL may serve as a promising therapeutic agent to reduce fibrogenesis.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Cirrosis Hepática/tratamiento farmacológico , Animales , Tetracloruro de Carbono/efectos adversos , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Comprimidos/administración & dosificación , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-31341490

RESUMEN

Panax ginseng (PG) is a widely used functional food and herbal with immunoregulation activity. Currently, immunoregulation studies of PG mainly focused on the specific actions of individual constituents. However, the integral immunoregulation mechanisms of PG need further research. In this study, an integrated metabolomics and network pharmacology approach were used to investigate it. High-content screening was used to evaluate macrophage phagocytosis activity of PG. Untargeted metabolomics profiling of murine macrophage cells with UHPLC-Q-TOF-MS and a multivariate data method were performed to discover the potential biomarkers and metabolic pathways. Then, a macrophage phenotype related "ingredients-targets-metabolites" network of PG was constructed using network pharmacology for further research. As a result, PG can significantly enhance macrophage phagocytosis of GFP-E. coli. A total of twenty potential biomarkers and ten main pathways for which levels changed markedly upon treatment were identified, including glycerophospholipid metabolism, glutathione metabolism, choline metabolism, and taurine metabolism. Twenty compounds of PG associated with metabolomic changes were selected by the network pharmacology analysis, including ginsenoside Re, ginsenoside Rg1, frutinone A, and kaempferol. The network pharmacology results also showed that PG can polarize macrophages to both M1 and M2 phenotype but may be prone to M2 phenotype. In conclusion, our results indicated that PG may be prone to polarize macrophages to M2 phenotype by mainly regulating the glutathione and choline metabolism, which was related to twenty compounds of PG.

3.
J Ethnopharmacol ; 238: 111813, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-30910578

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Whitmania pigra Whitman (Whitmania pigra, WP), firstly recorded in the Shennong's Herbal Classic and officially listed in the Chinese Pharmacopoeia, is a well-used cardiovascular protective traditional Chinese medicine derived from leeches. Traditional Chinese physicians prefer to prescribe the dried whole body of leech processed under high temperatures. It has been reported that dried WP remains clinically effective. However, the therapeutic mechanism has yet not be clearly elucidated. AIM OF THE STUDY: This study was designed to investigate the protective activity of the extract of WP in a high-molecular-weight dextran-induced blood hyperviscosity rat model, and to explore the role of WP in improving blood hyperviscosity related metabolic disorders and to clarify the possible mechanism of metabolic regulation. MATERIALS AND METHODS: The hemorheological parameters were measured with an automated blood rheology analyzer. Hematoxylin-eosin staining was used to observe the pathological changes in aortic tissues samples. Further, a liquid chromatography-mass-spectrometry (LC-MS)-based untargeted metabolomics approach was applied to characterize the metabolic alterations. RESULTS: WP has evident attenuating effects on blood hyperviscosity and related metabolic disorders, and the influences are distinct from those of aspirin. The results showed that WP had good effects in reducing blood viscosity and ameliorating histopathological changes in the thoracic aorta in a high molecular weight dextran-induced blood hyperviscosity rat model. The middle dose (2.5 g raw material/kg body weight) of WP exhibited effects equivalent to aspirin (100 mg/kg) on hemorheological and histopathological parameters (P > 0.05). However, when using metabolomics profiling, we found that WP could significantly improve blood hyperviscosity-related metabolic disorders and restore metabolites to normal levels; while aspirin showed little effect. With principal component analysis and orthogonal partial least-squares discriminant analysis, WP regulated many more endogenous metabolites than aspirin. With pathway enrichment analysis, the differential endogenous metabolites were involved in cysteine and methionine metabolism, TCA cycle, arachidonic acid metabolism, etc., highlighting the metabolic reprogramming potential of WP against blood hyperviscosity-induced metabolic disorders. CONCLUSIONS: The study suggest that WP has a more potent effect, but a different mechanism, than aspirin in improving either blood hyperviscosity or related metabolic disorders associated with cardio- and cerebrovascular diseases.


Asunto(s)
Viscosidad Sanguínea/efectos de los fármacos , Mezclas Complejas/farmacología , Sanguijuelas , Animales , Ciclooxigenasa 2/genética , Cistationina betasintasa/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Polvos , Ratas Sprague-Dawley
4.
Front Pharmacol ; 8: 562, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912714

RESUMEN

Background and Purpose:Polygonum orientale L. (family: Polygonaceae), named Hongcao in China, is a Traditional Chinese Medicinal and has long been used for rheumatic arthralgia and rheumatoid arthritis. However, no pharmacological and mechanism study to confirm these clinic effects have been published. In this investigation, the anti-inflammatory, analgesic effects and representative active ingredient compounds of P. orientale have been studied. Methods: Dried small pieces of the stems and leaves of P. orientale were decocted with water and partitioned successively to obtain ethyl acetate and ethyl ether extract of P. orientale (POEa and POEe). Chemical compositions of them were analyzed by UPLC-Q-Exactive HRMS. Anti-inflammatory and analgesic effects of POEa and POEe were evaluated using xylene induced ear edema, carrageenan induced paw edema, Freunds' complete adjuvant induced arthritis, and formaldehyde induced pain in rat. Their mechanisms of anti-inflammatory and analgesic effects were also studied via assays of TNF-α, IL-1ß, IL-6, and PGE2 in serum. Results: UPLC-Q-Exactive HRMS analysis showed that POEa and POEe mainly contained flavonoids including orientin, isoorientin, vitexin, luteolin, and quercetin. Furthermore, anti-inflammatory effects of POEa and POEe were evident in xylene induced ear edema. The paw edema in Freund's complete adjuvant and carrageenan were significantly (P < 0.05, 0.01) inhibited by POEa (5, 7.5 g/kg). POEe (7.5 g/kg) was significantly (P < 0.05, 0.01) inhibited Freunds' complete adjuvant induced paw edema and cotton pellet induced granuloma formation. Similarly, POEe significantly (P < 0.05, 0.01) inhibited the pain sensation in acetic acid induced writhing test. POEa (5, 7.5 g/kg) significantly (P < 0.05, 0.01) inhibited formaldehyde induced pain in both phases. POEa (7.5 g/kg) markedly (P < 0.05) prolonged the latency period of hot plate test after 30 and 60 min. The concentrations of TNF-α, IL-1ß, IL-6, and PGE2 were significantly (P < 0.01) decreased by POEa (3.75, 5 g/kg). Conclusion: POEa and POEe have anti-inflammatory and analgesic effects, which was mainly relevant to the presence of flavonoids, including orientin, isoorientin, vitexin, luteolin, and quercetin. The mechanism of anti-inflammatory and analgesic effects of POEa may be to decrease the concentrations of TNF-α, IL-1ß, IL-6, and PGE2 in serum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA