Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Am Chem Soc ; 146(19): 12984-12999, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709897

RESUMEN

Multivalent battery chemistries have been explored in response to the increasing demand for high-energy rechargeable batteries utilizing sustainable resources. Solvation structures of working cations have been recognized as a key component in the design of electrolytes; however, most structure-property correlations of metal ions in organic electrolytes usually build upon favorable static solvation structures, often overlooking solvent exchange dynamics. We here report the ion solvation structures and solvent exchange rates of magnesium electrolytes in various solvents by using multimodal nuclear magnetic resonance (NMR) analysis and molecular dynamics/density functional theory (MD/DFT) calculations. These magnesium solvation structures and solvent exchange dynamics are correlated to the combined effects of several physicochemical properties of the solvents. Moreover, Mg2+ transport and interfacial charge transfer efficiency are found to be closely correlated to the solvent exchange rate in the binary electrolytes where the solvent exchange is tunable by the fraction of diluent solvents. Our primary findings are (1) most battery-related solvents undergo ultraslow solvent exchange coordinating to Mg2+ (with time scales ranging from 0.5 µs to 5 ms), (2) the cation transport mechanism is a mixture of vehicular and structural diffusion even at the ultraslow exchange limit (with faster solvent exchange leading to faster cation transport), and (3) an interfacial model wherein organic-rich regions facilitate desolvation and inorganic regions promote Mg2+ transport is consistent with our NMR, electrochemistry, and cryogenic X-ray photoelectron spectroscopy (cryo-XPS) results. This observed ultraslow solvent exchange and its importance for ion transport and interfacial properties necessitate the judicious selection of solvents and informed design of electrolyte blends for multivalent electrolytes.

2.
J Am Chem Soc ; 145(1): 99-109, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36563310

RESUMEN

The effects of water on the carboxylic acid ketonization reaction over solid Lewis-acid catalysts were examined by nuclear magnetic resonance (NMR) spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), temperature-programmed desorption (TPD), and kinetic measurements. Acetic acid and propanoic acid were used as model compounds, and P25 TiO2 was used as a model catalyst to represent the anatase TiO2 since the rutile phase only contributes to <2.5% of the overall ketonization activity of P25 TiO2. The kinetic measurement showed that introducing H2O vapor in gaseous feed decreases the ketonization reaction rate by increasing the intrinsic activation barrier of gas-phase acetic acid on anatase TiO2. Quantitative TPD of acetic acid indicated that H2O does not compete with acetic acid for Lewis sites. Instead, as indicated by combined approaches of NMR and DRIFTS, H2O associates with the adsorbed acetate or acetic acid intermediates on the catalyst surface and alters their reactivities for the ketonization reaction. There are multiple species present on the anatase TiO2 surface upon carboxylic acid adsorption, including molecular carboxylic acid, monodentate carboxylate, and chelating/bridging bidentate carboxylates. The presence of H2O vapor increases the coverage of the less reactive bridging bidentate carboxylate associated with adsorbed H2O, leading to lower ketonization activity on hydrated anatase TiO2. Surface hydroxyl groups, which are consumed by interaction with carboxylic acid upon the formation of surface acetate species, do not impact the ketonization reaction.


Asunto(s)
Ácidos Carboxílicos , Agua , Agua/química , Titanio/química , Ácido Acético/química , Gases
3.
Acc Chem Res ; 53(3): 611-619, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31927984

RESUMEN

The characterization of catalytic materials under working conditions is of paramount importance for a realistic depiction and comprehensive understanding of the system. Under such relevant environments, catalysts often exhibit properties or reactivity not observed under standard spectroscopic conditions. Fulfilling such harsh environments as high temperature and pressure is a particular challenge for solid-state NMR where samples spin several thousand times a second within a strong magnetic field. To address concerns about the disparities between spectroscopic environments and operando conditions, novel MAS NMR technology has been developed that enables the probing of catalytic systems over a wide range of pressures, temperatures, and chemical environments. In this Account, new efforts to overcome the technical challenges in the development of operando and in situ MAS NMR will be briefly outlined. Emphasis will be placed on exploring the unique chemical regimes that take advantage of the new developments. With the progress achieved, it is possible to interrogate both structure and dynamics of the environments surrounding various nuclear constituents (1H, 13C, 23Na, 27Al, etc.), as well as assess time-resolved interactions and transformations.Operando and in situ NMR enables the direct observation of chemical components and their interactions with active sites (such as Brønsted acid sites on zeolites) to reveal the nature of the active center under catalytic conditions. Further, mixtures of such constituents can also be assessed to reveal the transformation of the active site when side products, such as water, are generated. These interactions are observed across a range of temperatures (-10 to 230 °C) and pressures (vacuum to 100 bar) for both vapor and condensed phase analysis. When coupled with 2D NMR, computational modeling, or both, specific binding modes are identified where the adsorbed state provides distinct signatures. In addition to vapor phase chemical environments, gaseous environments can be introduced and controlled over a wide range of pressures to support catalytic studies that require H2, CO, CO2, etc. Mixtures of three phases may also be employed. Such reactions can be monitored in situ to reveal the transformation of the substrates, active sites, intermediates, and products over the course of the study. Further, coupling of operando NMR with isotopic labeling schemes reveals specific mechanistic insights otherwise unavailable. Examples of these strategies will be outlined to reveal important fundamental insights on working catalyst systems possible only under operando conditions. Extension of operando MAS NMR to study the solid-electrolyte interface and solvation structures associated with energy storage systems and biomedical systems will also be presented to highlight the versatility of this powerful technique.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Temperatura , Catálisis , Sondas Moleculares , Estructura Molecular
4.
J Am Chem Soc ; 141(8): 3444-3455, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30698436

RESUMEN

The catalytic sites of acidic zeolite are profoundly altered by the presence of water changing the nature of the Brønsted acid site. High-resolution solid-state NMR spectroscopy shows water interacting with zeolite Brønsted acid sites, converting them to hydrated hydronium ions over a wide range of temperature and thermodynamic activity of water. A signal at 9 ppm was observed at loadings of 2-9 water molecules per Brønsted acid site and is assigned to hydrated hydronium ions on the basis of the evolution of the signal with increasing water content, chemical shift calculations, and the direct comparison with HClO4 in water. The intensity of 1H-29Si cross-polarization signal first increased and then decreased with increasing water chemical potential. This indicates that hydrogen bonds between water molecules and the tetrahedrally coordinated aluminum in the zeolite lattice weaken with the formation of hydronium ion-water clusters and increase the mobility of protons. DFT-based ab initio molecular dynamics studies at multiple temperatures and water concentrations agree well with this interpretation. Above 140 °C, however, fast proton exchange between bridging hydroxyl groups and water occurs even in the presence of only one water molecule per acid site.

5.
Inorg Chem ; 58(18): 12385-12394, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31486636

RESUMEN

Gibbsite (α-Al(OH)3) transformation into layered double hydroxides, such as lithium aluminum hydroxide dihydrate (LiAl-LDH), is generally thought to occur by solid-state intercalation of Li+, in part because of the intrinsic structural similarities in the quasi-2D octahedral Al3+ frameworks of these two materials. However, in caustic environments where gibbsite solubility is high relative to LiAl-LDH, a dissolution-reprecipitation pathway is conceptually enabled, proceeding via precipitation of tetrahedral (Td) aluminate anions (Al(OH)4-) at concentrations held below 150 mM by rapid LiAl-LDH nucleation and growth. In this case, the relative importance of solid-state versus solution pathways is unknown because it requires in situ techniques that can distinguish Al3+ in solution and in the solid phase (gibbsite and LiAl-LDH), simultaneously. Here, we examine this transformation in partially deuterated LiOH solutions, using multinuclear, magic angle spinning, and high field nuclear magnetic resonance spectroscopy (27Al and 6Li MAS NMR), with supporting X-ray diffraction and scanning electron microscopy. In situ 27Al MAS NMR captured the emergence and decline of metastable aluminate ions, consistent with dissolution of gibbsite and formation of LiAl-LDH by precipitation. High field, ex situ 6Li NMR of the the progressively reacted solids resolved an Oh Li+ resonance that narrowed during the transformation. This is likely due to increasing local order in LiAl-LDH, correlating well with observations in high field, ex situ 27Al MAS NMR spectra, where a comparatively narrow LiAl-LDH Oh 27Al resonance emerges upfield of gibbsite resonances. No intermediate pentahedral Al3+ is resolvable. Quantification of aluminate ion concentrations suggests a prominent role for the solution pathway in this system, a finding that could help improve strategies for manipulating Al3+ concentrations in complex caustic waste streams, such as those being proposed to treat the high-level nuclear waste stored at the U.S. Department of Energy's Hanford Nuclear Reservation in Washington State, USA.

6.
Angew Chem Int Ed Engl ; 58(36): 12609-12616, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31283870

RESUMEN

The selective catalytic reduction (SCR) of NOx with NH3 to N2 with supported V2 O5 (-WO3 )/TiO2 catalysts is an industrial technology used to mitigate toxic emissions. Long-standing uncertainties in the molecular structures of surface vanadia are clarified, whereby progressive addition of vanadia to TiO2 forms oligomeric vanadia structures and reveals a proportional relationship of SCR reaction rate to [surface VOx concentration]2 , implying a 2-site mechanism. Unreactive surface tungsta (WO3 ) also promote the formation of oligomeric vanadia (V2 O5 ) sites, showing that promoter incorporation enhances the SCR reaction by a structural effect generating adjacent surface sites and not from electronic effects as previously proposed. The findings outline a method to assess structural effects of promoter incorporation on catalysts and reveal both the dual-site requirement for the SCR reaction and the important structural promotional effect that tungsten oxide offers for the SCR reaction by V2 O5 /TiO2 catalysts.

7.
Nano Lett ; 17(5): 3061-3067, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28448154

RESUMEN

Li-S batteries have been extensively studied using rigid carbon as the host for sulfur encapsulation, but improving the properties with a reduced electrolyte amount remains a significant challenge. This is critical for achieving high energy density. Here, we developed a soft PEO10LiTFSI polymer swellable gel as a nanoscale reservoir to trap the polysulfides under lean electrolyte conditions. The PEO10LiTFSI gel immobilizes the electrolyte and confines polysulfides within the ion conducting phase. The Li-S cell with a much lower electrolyte to sulfur ratio (E/S) of 4 gE/gS (3.3 mLE/gS) could deliver a capacity of 1200 mA h/g, 4.6 mA h/cm2, and good cycle life. The accumulation of polysulfide reduction products, such as Li2S, on the cathode, is identified as the potential mechanism for capacity fading under lean electrolyte conditions.

8.
J Am Chem Soc ; 139(27): 9178-9185, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28628319

RESUMEN

The reaction mechanism of solid-acid-catalyzed phenol alkylation with cyclohexanol and cyclohexene in the apolar solvent decalin has been studied using in situ 13C MAS NMR spectroscopy. Phenol alkylation with cyclohexanol sets in only after a majority of cyclohexanol is dehydrated to cyclohexene. As phenol and cyclohexanol show similar adsorption strength, this strict reaction sequence is not caused by the limited access of phenol to cyclohexanol, but is due to the absence of a reactive electrophile as long as a significant fraction of cyclohexanol is present. 13C isotope labeling demonstrates that the reactive electrophile, the cyclohexyl carbenium ion, is directly formed in a protonation step when cyclohexene is the coreactant. In the presence of cyclohexanol, its protonated dimers at Brønsted acid sites hinder the adsorption of cyclohexene and the formation of a carbenium ion. Thus, it is demonstrated that protonated cyclohexanol dimers dehydrate without the formation of a carbenium ion, which would otherwise have contributed to the alkylation in the kinetically relevant step. Isotope scrambling shows that intramolecular rearrangement of cyclohexyl phenyl ether does not significantly contribute to alkylation at the aromatic ring.

9.
Environ Sci Technol ; 50(22): 12373-12384, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27718556

RESUMEN

We report an in situ high-pressure NMR capability that permits natural abundance 17O and 25Mg NMR characterization of dissolved species in aqueous solution and in the presence of supercritical CO2 fluid (scCO2). The dissolution of Mg(OH)2 (brucite) in a multiphase water/scCO2 fluid at 90 atm pressure and 50 °C was studied in situ, with relevance to geological carbon sequestration. 17O NMR spectra allowed identification and distinction of various fluid species including dissolved CO2 in the H2O-rich phase, scCO2, aqueous H2O, and HCO3-. The widely separated spectral peaks for various species can all be observed both dynamically and quantitatively at concentrations as low as 20 mM. Measurement of the concentrations of these individual species also allows an in situ estimate of the hydrogen ion concentration, or pCH+ values, of the reacting solutions. The concentration of Mg2+ can be observed by natural abundance 25Mg NMR at a concentration as low as 10 mM. Quantum chemistry calculations of the NMR chemical shifts on cluster models aided in the interpretation of the experimental results. Evidence for the formation of polymeric Mg2+ clusters at high concentrations in the H2O-rich phase, a possible critical step needed for magnesium carbonate formation, was found.


Asunto(s)
Dióxido de Carbono/química , Agua , Secuestro de Carbono , Espectroscopía de Resonancia Magnética , Solubilidad , Agua/química
10.
Nano Lett ; 15(5): 3309-16, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25785550

RESUMEN

A fundamental understanding of electrochemical reaction pathways is critical to improving the performance of Li-S batteries, but few techniques can be used to directly identify and quantify the reaction species during disharge/charge cycling processes in real time. Here, an in situ (7)Li NMR technique employing a specially designed cylindrical microbattery was used to probe the transient electrochemical and chemical reactions occurring during the cycling of a Li-S system. In situ NMR provides real time, semiquantitative information related to the temporal evolution of lithium polysulfide allotropes during both discharge/charge processes. This technique uniquely reveals that the polysulfide redox reactions involve charged free radicals as intermediate species that are difficult to detect in ex situ NMR studies. Additionally, it also uncovers vital information about the (7)Li chemical environments during the electrochemical and parasitic reactions on the Li metal anode. These new molecular-level insights about transient species and the associated anode failure mechanism are crucial to delineating effective strategies to accelerate the development of Li-S battery technologies.

11.
J Am Chem Soc ; 137(7): 2600-7, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25646600

RESUMEN

Lithium alloys of group IV elements such as silicon and germanium are attractive candidates for use as anodes in high-energy-density lithium-ion batteries. However, the poor capacity retention arising from volume swing during lithium cycling restricts their widespread application. Herein, we report high reversible capacity and superior rate capability from core-shell structure consisting of germanium nanorods embedded in multiwall carbon nanotubes. To understand how the core-shell structure helps to mitigate volume swings and buffer against mechanical instability, transmission electron microscopy, X-ray diffraction, and in situ (7)Li nuclear magnetic resonance were used to probe the structural rearrangements and phase evolution of various Li-Ge alloy phases during (de)alloying reactions with lithium. The results provide insights into amorphous-to-crystalline transition and lithium germanide alloy phase transformation, which are important reactions controlling performance in this system.

12.
J Am Chem Soc ; 136(23): 8296-306, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24815517

RESUMEN

The degree of substitution of Si(4+) by Al(3+) in the oxygen-terminated tetrahedra (Al T-sites) of zeolites determines the concentration of ion-exchange and Brønsted acid sites. Because the location of the tetrahedra and the associated subtle variations in bond angles influence the acid strength, quantitative information about Al T-sites in the framework is critical to rationalize catalytic properties and to design new catalysts. A quantitative analysis is reported that uses a combination of extended X-ray absorption fine structure (EXAFS) analysis and (27)Al MAS NMR spectroscopy supported by DFT-based molecular dynamics simulations. To discriminate individual Al atoms, sets of ab initio EXAFS spectra for various T-sites are generated from DFT-based molecular dynamics simulations, allowing quantitative treatment of the EXAFS single- and multiple-photoelectron scattering processes out to 3-4 atom shells surrounding the Al absorption center. It is observed that identical zeolite types show dramatically different Al distributions. A preference of Al for T-sites that are part of one or more 4-member rings in the framework over those T-sites that are part of only 5- and 6-member rings in an HBEA150 zeolite has been determined using this analysis.

13.
Fungal Genet Biol ; 72: 207-215, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25117693

RESUMEN

Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes, including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we developed a glycan enrichment strategy that couples Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) with dialysis to enrich the glycans from the pronase E digests of RNase B, followed by NMR analysis of the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is a simple, fast, and efficient sample preparation approach. The approach was thus applied to analysis of a biological complex sample, the pronase E digest of the secreted proteins from the fungus Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core similar to the structure of the glycan from RNase B, and O-linked glycans bearing mannose and glucose with 1→3 and 1→6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled with dialysis is very effective and accessible in preparing glycans for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.


Asunto(s)
Aspergillus niger/química , Cromatografía Liquida/métodos , Diálisis/métodos , Proteínas Fúngicas/química , Espectroscopía de Resonancia Magnética/métodos , Polisacáridos/análisis , Polisacáridos/aislamiento & purificación
14.
J Chem Phys ; 141(10): 104509, 2014 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-25217939

RESUMEN

Ferrocene (Fc) and N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethyl-sulfonimide (Fc1N112-TFSI) were dissolved in carbonate solvents and self-diffusion coefficients (D) of solutes and solvents were measured by (1)H and (19)F pulsed field gradient nuclear magnetic resonance (NMR) spectroscopy. The organic solvents were propylene carbonate (PC), ethyl methyl carbonate (EMC), and a ternary mixture that also includes ethylene carbonate (EC). Results from NMR studies over the temperature range of 0-50 °C and for various concentrations (0.25-1.7 M) of Fc1N112-TFSI are compared to values of D simulated with classical molecular dynamics (MD). The measured self-diffusion coefficients gradually decreased as the Fc1N112-TFSI concentration increased in all solvents. Since TFSI(-) has fluoromethyl groups (CF3), D(TFSI) could be measured separately and the values found are larger than those for D(Fc1N112) in all samples measured. The EC, PC, and EMC have the same D in the neat solvent mixture and when Fc is dissolved in EC/PC/EMC at a concentration of 0.2 M, probably due to the interactions between common carbonyl structures within EC, PC, and EMC. A difference in D (D(PC) < D(EC) < D(EMC)), and both a higher E(a) for translational motion and higher effective viscosity for PC in the mixture containing Fc1N112-TFSI reflect the interaction between PC and Fc1N112(+), which is a relatively stronger interaction than that between Fc1N112(+) and other solvent species. In the EC/PC/EMC solution that is saturated with Fc1N112-TFSI, we find that D(PC) = D(EC) = D(EMC) and Fc1N112(+) and all components of the EC/PC/EMC solution have the same E(a) for translational motion, while the ratio D(EC/PC/EMC)/D(Fc1N112) is approximately 3. These results reflect the lack of available free volume for independent diffusion in the saturated solution. The Fc1N112(+) transference numbers lie around 0.4 and increase slightly as the temperature is increased in the PC and EMC solvents. The trends observed for D from simulations are in good agreement with experimental results and provide molecular level understanding of the solvation structure of Fc1N112-TFSI dissolved in EC/PC/EMC.

15.
Chem Sci ; 15(21): 8031-8037, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817567

RESUMEN

The selective formation of C-C bonds, coupled with effective removal of oxygen, plays a crucial role in the process of upgrading biomass-derived oxygenates into fuels and chemicals. However, co-feeding reactants with water is sometimes necessary to assist binding sites in catalytic reactions, thereby achieving desirable performance. Here, we report the design of a CeSnBeta catalyst featuring dual Lewis acidic sites for the efficient production of isobutene from acetone via C-C coupling followed by deoxygenation. By incorporating Ce species onto SnBeta, which was synthesized through liquid-phase grafting of dealuminated Beta, we created confined dual Lewis acidic centers within Beta zeolites. The cooperative action of Ce species and framework Sn sites within this confined environment enabled selective catalysis of the acetone-to-isobutene cascade reactions, showcasing enhanced stability even without the presence of water.

16.
ACS Appl Mater Interfaces ; 15(41): 48072-48084, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37805993

RESUMEN

Predictive understanding of the molecular interaction of electrolyte ions and solvent molecules and their chemical reactivity on electrodes has been a major challenge but is essential for addressing instabilities and surface passivation that occur at the electrode-electrolyte interface of multivalent magnesium batteries. In this work, the isolated intrinsic reactivities of prominent chemical species present in magnesium bis(trifluoromethanesulfonimide) (Mg(TFSI)2) in diglyme (G2) electrolytes, including ionic (TFSI-, [Mg(TFSI)]+, [Mg(TFSI):G2]+, and [Mg(TFSI):2G2]+) as well as neutral molecules (G2) on a well-defined magnesium vanadate cathode (MgV2O4) surface, have been studied using a combination of first-principles calculations and multimodal spectroscopy analysis. Our calculations show that nonsolvated [Mg(TFSI)]+ is the strongest adsorbing species on the MgV2O4 surface compared with all other ions while partially solvated [Mg(TFSI):G2]+ is the most reactive species. The cleavage of C-S bonds in TFSI- to form CF3- is predicted to be the most desired pathway for all ionic species, which is followed by the cleavage of C-O bonds of G2 to yield CH3+ or OCH3- species. The strong stabilization and electron transfer between ionic electrolyte species and MgV2O4 is found to significantly favor these decomposition reactions on the surface compared with intrinsic gas-phase dissociation. Experimentally, we used state-of-the-art ion soft landing to selectively deposit mass-selected TFSI-, [Mg(TFSI):G2]+, and [Mg(TFSI):2G2]+ on a MgV2O4 thin film to form a well-defined electrolyte-MgV2O4 interface. Analysis of the soft-landed interface using X-ray photoelectron, X-ray absorption near-edge structure, electron energy-loss spectroscopies, as well as transmission electron microscopy confirmed the presence of decomposition species (e.g., MgFx, carbonates) and the higher amount of MgFx with [Mg(TFSI):G2]+ formed in the interfacial region, which corroborates the theoretical observation. Overall, these results indicate that Mg2+ desolvation results in electrolyte decomposition facilitated by surface adsorption, charge transfer, and the formation of passivating fluorides on the MgV2O4 cathode surface. This work provides the first evidence of the primary mechanisms leading to electrolyte decomposition at high-voltage oxide surfaces in multivalent batteries and suggests that the design of new, anodically stable electrolytes must target systems that facilitate cation desolvation.

17.
Phys Chem Chem Phys ; 14(7): 2137-43, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22025270

RESUMEN

A large-sample-volume constant-flow magic angle sample spinning (CF-MAS) NMR probe is reported for in situ studies of the reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions. In our approach, the reactants are introduced into the catalyst bed using a fixed tube at one end of the MAS rotor while a second fixed tube, linked to a vacuum pump, is attached at the other end of the rotor. The pressure difference between both ends of the catalyst bed inside the sample cell space forces the reactants flowing through the catalyst bed, which improves the diffusion of the reactants and products. This design allows the use of a large sample volume for enhanced sensitivity and thus permitting in situ(13)C CF-MAS studies at natural abundance. As an example of application, we show that reactants, products and reaction transition states associated with the 2-butanol dehydration reaction over a mesoporous silicalite supported heteropoly acid catalyst (HPA/meso-silicalite-1) can all be detected in a single (13)C CF-MAS NMR spectrum at natural abundance. Coke products can also be detected at natural (13)C abundance and under the stopped flow condition. Furthermore, (1)H CF-MAS NMR is used to identify the surface functional groups of HPA/meso-silicalite-1 under the condition of in situ drying. We also show that the reaction dynamics of 2-butanol dehydration using HPA/meso-silicalite-1 as a catalyst can be explored using (1)H CF-MAS NMR.

18.
JACS Au ; 2(4): 917-932, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35557755

RESUMEN

Efforts to expand the technological capability of batteries have generated increased interest in divalent cationic systems. Electrolytes used for these electrochemical applications often incorporate cyclic ethers as electrolyte solvents; however, the detailed solvation environments within such systems are not well-understood. To foster insights into the solvation structures of such electrolytes, Ca(TFSI)2 and Zn(TFSI)2 dissolved in tetrahydrofuran (THF) and 2-methyl-tetrahydrofuran were investigated through multi-nuclear magnetic resonance spectroscopy (17O, 43Ca, and 67Zn NMR) combined with quantum chemistry modeling of NMR chemical shifts. NMR provides spectroscopic fingerprints that readily couple with quantum chemistry to identify a set of most probable solvation structures based on the best agreement between the theoretically predicted and experimentally measured values of chemical shifts. The multi-nuclear approach significantly enhances confidence that the correct solvation structures are identified due to the required simultaneous agreement between theory and experiment for multiple nuclear spins. Furthermore, quantum chemistry modeling provides a comparison of the solvation cluster formation energetics, allowing further refinement of the preferred solvation structures. It is shown that a range of solvation structures coexist in most of these electrolytes, with significant molecular motion and dynamic exchange among the structures. This level of solvation diversity correlates with the solubility of the electrolyte, with Zn(TFSI)2/THF exhibiting the lowest degree of each. Comparisons of analogous Ca2+ and Zn2+ solvation structures reveal a significant cation size effect that is manifested in significantly reduced cation-solvent bond lengths and thus stronger solvent bonding for Zn2+ relative to Ca2+. The strength of this bonding is further reduced by methylation of the cyclic ether ring. Solvation shells containing anions are energetically preferred in all the studied electrolytes, leading to significant quantities of contact ion pairs and consequently neutrally charged clusters. It is likely that the transport and interfacial de-solvation/re-solvation properties of these electrolytes are directed by these anion interactions. These insights into the detailed solvation structures, cation size, and solvent effects, including the molecular dynamics, are fundamentally important for the rational design of electrolytes in multivalent battery electrolyte systems.

19.
Sci Rep ; 11(1): 7800, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833273

RESUMEN

Electronic cigarette usage has spiked in popularity over recent years. The enhanced prevalence has consequently resulted in new health concerns associated with the use of these devices. Degradation of the liquids used in vaping have been identified as a concern due to the presence of toxic compounds such as aldehydes in the aerosols. Typically, such thermochemical conversions are reported to occur between 300 and 400 °C. Herein, the low-temperature thermal degradation of propylene glycol and glycerol constituents of e-cigarette vapors are explored for the first time by natural abundance 13C NMR and 1H NMR, enabling in situ detection of intact molecules from decomposition. The results demonstrate that the degradation of electronic nicotine delivery system (ENDS) liquids is strongly reliant upon the oxygen availability, both in the presence and absence of a material surface. When oxygen is available, propylene glycol and glycerol readily decompose at temperatures between 133 and 175 °C over an extended time period. Among the generated chemical species, formic and acrylic acids are observed which can negatively affect the kidneys and lungs of those who inhale the toxin during ENDS vapor inhalation. Further, the formation of hemi- and formal acetals is noted from both glycerol and propylene glycol, signifying the generation of both formaldehyde and acetaldehyde, highly toxic compounds, which, as a biocide, can lead to numerous health ailments. The results also reveal a retardation in decomposition rate when material surfaces are prevalent with no directly observed unique surface spectator or intermediate species as well as potentially slower conversions in mixtures of the two components. The generation of toxic species in ENDS liquids at low temperatures highlights the dangers of low-temperature ENDS use.


Asunto(s)
Administración por Inhalación , Aldehídos/química , Sistemas Electrónicos de Liberación de Nicotina , Temperatura , Vapeo/efectos adversos , Humanos
20.
ACS Omega ; 6(5): 4090-4099, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33585784

RESUMEN

Herein, a detailed analysis was carried out using high-field (19.9 T) 27Al magic-angle spinning (MAS) nuclear magnetic resonance (NMR) on three specially prepared aluminum oxide samples where the γ-, δ-, and θ-Al2O3 phases are dominantly expressed through careful control of the synthesis conditions. Specifically, two-dimensional (2D) multiquantum (MQ) MAS 27Al was used to obtain high spectral resolution, which provided a guide for analyzing quantitative 1D 27Al NMR spectra. Six aluminum sites were resolved in the 2D MQ MAS NMR spectra, and seven aluminum sites were required to fit the 1D spectra. A set of octahedral and tetrahedral peaks with well-defined quadrupolar line shapes was observed in the θ-phase dominant sample and was unambiguously assigned to the θ-Al2O3 phase. The distinct line shapes related to the θ-Al2O3 phase provided an opportunity for effectively deconvoluting the more complex spectrum obtained from the δ-Al2O3 dominant sample, allowing the peaks/quadrupolar parameters related to the δ-Al2O3 phase to be extracted. The results show that the δ-Al2O3 phase contains three distinct AlO sites and three distinct AlT sites. This detailed Al site structural information offers a powerful way of analyzing the most complex γ-Al2O3 spectrum. It is found that the γ-Al2O3 phase consists of Al sites with local structures similar to those found in the δ-Al2O3 and θ-Al2O3 phases albeit with less ordering. Spin-lattice relaxation time measurement further confirms the disordering of the lattice. Collectively, this study uniquely assigns 27Al features in transition aluminas, offering a simplified method to quantify complex mixtures of aluminum sites in transition alumina samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA