Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869071

RESUMEN

Homologous recombination (HR) is a key process for repairing DNA double strand breaks and for promoting genetic diversity. However, HR occurs unevenly across the genome, and certain genomic features can influence its activity. One such feature is the presence of guanine quadruplexes (G4s), stable secondary structures widely distributed throughout the genome. These G4s play essential roles in gene transcription and genome stability regulation. Especially, elevated G4 levels in cells deficient in the Bloom syndrome helicase (BLM) significantly enhance HR at G4 sites, potentially threatening genome stability. Here, we investigated the role of G4-binding protein Yin Yang-1 (YY1) in modulating HR at G4 sites in human cells. Our results show that YY1's binding to G4 structures suppresses sister chromatid exchange after BLM knockdown, and YY1's chromatin occupancy negatively correlates with the overall HR rate observed across the genome. By limiting RAD51 homolog 1 (RAD51) access, YY1 preferentially binds to essential genomic regions, shielding them from excessive HR. Our findings unveil a novel role of YY1-G4 interaction, revealing novel insights into cellular mechanisms involved in HR regulation.

2.
Proc Natl Acad Sci U S A ; 120(5): e2215575120, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36696445

RESUMEN

Chloroplast division involves the coordination of protein complexes from the stroma to the cytosol. The Min system of chloroplasts includes multiple stromal proteins that regulate the positioning of the division site. The outer envelope protein PLASTID DIVISION1 (PDV1) was previously reported to recruit the cytosolic chloroplast division protein ACCUMULATION AND REPLICATION OF CHLOROPLAST5 (ARC5). However, we show here that PDV1 is also important for the stability of the inner envelope chloroplast division protein PARALOG OF ARC6 (PARC6), a component of the Min system. We solved the structure of both the C-terminal domain of PARC6 and its complex with the C terminus of PDV1. The formation of an intramolecular disulfide bond within PARC6 under oxidized conditions prevents its interaction with PDV1. Interestingly, this disulfide bond can be reduced by light in planta, thus promoting PDV1-PARC6 interaction and chloroplast division. Interaction with PDV1 can induce the dimerization of PARC6, which is important for chloroplast division. Magnesium ions, whose concentration in chloroplasts increases upon light exposure, also promote the PARC6 dimerization. This study highlights the multilayer regulation of the PDV1-PARC6 interaction as well as chloroplast division.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plastidios/metabolismo , Cloroplastos/metabolismo , Disulfuros/metabolismo , Dinaminas/metabolismo
3.
Langmuir ; 38(2): 629-637, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34994199

RESUMEN

In this work, we used dissipative particle dynamics to study the stability, deformation, and rupture of polymer vesicles confined in cylindrical channels under the flow field. The morphological evolution, elongation, and rupture of vesicles and the corresponding mechanisms were intensively investigated. Bullet-like vesicles, leaking vesicles, spherical micelles, hamburger-like micelles, and bilayers were observed by changing the degree of confinement and dimensionless shear rate. We found that increasing the dimensionless shear rate and the degree of confinement can cause the deformation or rupture of polymeric vesicles. The asphericity parameter was utilized to describe the degree of elongation of vesicles deviating from the sphere in the direction of the flow. The results show that the aggregates are more likely to be spherical when the confinement is weak, while they become elongated bullet-like shapes when the confinement is strong. The investigation of dynamics reveals that the degree of confinement and the dimensionless shear rate can affect the chain stretching and reorganization during the process of vesicle elongation. Furthermore, the rupture time of the vesicle shows a nonlinear decrease with an increase in the dimensionless shear rate, and the confinement also contributes to the rupture. The results are very useful for guiding the application of vesicles in a flow environment.


Asunto(s)
Micelas , Polímeros
4.
Soft Matter ; 17(7): 1912-1920, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33416062

RESUMEN

Adhesion of biological cells is mediated by the specific binding of receptors and ligands which are typically large proteins spanning through the plasma membranes of the contacting cells. The receptors and ligands can exhibit affinity for nanoscale lipid clusters that form within the plasma membrane. A central question is how these nanoscale lipid clusters physically affect and respond to the receptor-ligand binding during cell adhesion. Within the framework of classical statistical mechanics we find that the receptor-ligand binding reduces the threshold energy for lipid clusters to coalesce into mesoscale domains by up to ∼50%, and that the formation of these domains induces significant cooperativity of the receptor-ligand binding. The interplay between the receptor-ligand binding cooperativity and the lipid domain formation manifests acute sensitivity of the membrane system to changes in control parameters. This sensitivity can be crucial in cell signaling and immune responses.


Asunto(s)
Lípidos , Adhesión Celular , Membrana Celular/metabolismo , Ligandos , Unión Proteica
5.
Soft Matter ; 17(45): 10376-10382, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34747961

RESUMEN

The cell-supported lipid bilayer (SLB) adhesion system has been widely used as the model system to study the receptor-ligand interactions that occur at the membrane interface. The ligand-functionalized SLBs are deposited either directly on solids or on polymer cushions. An important question that arises is whether the geometry of the SLB affects the binding of cell adhesion receptors to the ligands. By using a mesoscopic mechanical model and Monte Carlo simulations, we have investigated the adhesion of a fluid membrane to a corrugated or egg-carton shaped SLB. We find that the nanoscale geometry of the SLB strongly affects the receptor-ligand binding. This effect results from the fact that the adhering membrane bends according to the SLB geometry in order for the adhesion receptors to bind ligands. The membrane bending couples with spatial distribution of the receptor-ligand complexes and membrane thermal undulations. Our results demonstrate that cell adhesion to SLBs can be controlled by tuning the nanoscale geometry of the SLB, and may have profound implications for future development of tissue engineering and regenerative medicine.


Asunto(s)
Membrana Dobles de Lípidos , Receptores de Superficie Celular , Adhesión Celular , Membrana Celular , Ligandos
6.
Nano Lett ; 20(1): 722-728, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31858798

RESUMEN

Nanoscale molecular clusters in cell membranes can serve as platforms to recruit membrane proteins for various biological functions. A central question is how these nanoclusters respond to physical contacts between cells. Using a statistical mechanics model and Monte Carlo simulations, we explore how the adhesion of cell membranes affects the stability and coalescence of clusters enriched in receptor proteins. Our results show that intercellular receptor-ligand binding and membrane shape fluctuations can lead to receptor aggregation within the adhering membranes even if large-scale clusters are thermodynamically unstable in nonadhering membranes.


Asunto(s)
Membrana Celular/química , Proteínas de la Membrana/química , Modelos Químicos , Simulación de Dinámica Molecular , Agregación de Receptores , Membrana Celular/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo
7.
Pharmacogenomics J ; 20(5): 705-716, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32042095

RESUMEN

Diffuse Large B-cell Lymphoma (DLBCL), a heterogeneous disease, is influenced by complex network of gene interactions. Most previous studies focused on individual genes, but ignored the importance of intergenic correlations. In current study, we aimed to explore the association between gene networks and overall survival (OS) of DLBCL patients treated with CHOP-based chemotherapy (cyclophosphamide combination with doxorubicin, vincristine and prednisone). Weighted gene co-expression network analysis was conducted to obtain insights into the molecular characteristics of DLBCL. Ten co-expression gene networks (modules) were identified in training dataset (n = 470), and their associations with patients' OS after chemotherapy were tested. The results were validated in four independent datasets (n = 802). Gene ontology (GO) biological function enrichment analysis was conducted with Metascape. Three modules (purple, brown and red), which were enriched in T-cell immune, cell-cell adhesion and extracellular matrix (ECM), respectively, were found to be related to longer OS. Higher expression of several hub genes within these three co-expression modules, for example, LCP2 (HR = 0.77, p = 5.40 × 10-2), CD2 (HR = 0.87, p = 6.31 × 10-2), CD3D (HR = 0.83, p = 6.94 × 10-3), FYB (HR = 0.82, p = 1.40 × 10-2), GZMK (HR = 0.92, p = 1.19 × 10-1), FN1 (HR = 0.88, p = 7.06 × 10-2), SPARC (HR = 0.82, p = 2.06 × 10-2), were found to be associated with favourable survival. Moreover, the associations of the modules and hub genes with OS in different molecular subtypes and different chemotherapy groups were also revealed. In general, our research revealed the key gene modules and several hub genes were upregulated correlated with good survival of DLBCL patients, which might provide potential therapeutic targets for future clinical research.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Redes Reguladoras de Genes , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Familia de Multigenes , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Ciclofosfamida/efectos adversos , Ciclofosfamida/uso terapéutico , Bases de Datos Genéticas , Doxorrubicina/efectos adversos , Doxorrubicina/uso terapéutico , Femenino , Humanos , Linfoma de Células B Grandes Difuso/mortalidad , Masculino , Persona de Mediana Edad , Farmacogenética , Prednisona/efectos adversos , Prednisona/uso terapéutico , Reproducibilidad de los Resultados , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento , Vincristina/efectos adversos , Vincristina/uso terapéutico
8.
J Transl Med ; 18(1): 144, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228625

RESUMEN

BACKGROUND: As the most common form of lymphoma, diffuse large B-cell lymphoma (DLBCL) is a clinical highly heterogeneous disease with variability in therapeutic outcomes and biological features. It is a challenge to identify of clinically meaningful tools for outcome prediction. In this study, we developed a prognosis model fused clinical characteristics with drug resistance pharmacogenomic signature to identify DLBCL prognostic subgroups for CHOP-based treatment. METHODS: The expression microarray data and clinical characteristics of 791 DLBCL patients from two Gene Expression Omnibus (GEO) databases were used to establish and validate this model. By using univariate Cox regression, eight clinical or genetic signatures were analyzed. The elastic net-regulated Cox regression analysis was used to select the best prognosis related factors into the predictive model. To estimate the prognostic capability of the model, Kaplan-Meier curve and the area under receiver operating characteristic (ROC) curve (AUC) were performed. RESULTS: A predictive model comprising 4 clinical factors and 2 pharmacogenomic gene signatures was established after 1000 times cross validation in the training dataset. The AUC of the comprehensive risk model was 0.78, whereas AUC value was lower for the clinical only model (0.68) or the gene only model (0.67). Compared with low-risk patients, the overall survival (OS) of DLBCL patients with high-risk scores was significantly decreased (HR = 4.55, 95% CI 3.14-6.59, log-rank p value = 1.06 × 10-15). The signature also enables to predict prognosis within different molecular subtypes of DLBCL. The reliability of the integrated model was confirmed by independent validation dataset (HR = 3.47, 95% CI 2.42-4.97, log rank p value = 1.53 × 10-11). CONCLUSIONS: This integrated model has a better predictive capability to ascertain the prognosis of DLBCL patients prior to CHOP-like treatment, which may improve the clinical management of DLBCL patients and provide theoretical basis for individualized treatment.


Asunto(s)
Linfoma de Células B Grandes Difuso , Farmacogenética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ciclofosfamida/uso terapéutico , Doxorrubicina/uso terapéutico , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Pronóstico , Reproducibilidad de los Resultados , Estudios Retrospectivos , Rituximab/uso terapéutico
9.
IUBMB Life ; 71(9): 1391-1400, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31120617

RESUMEN

Impaired angiogenesis in endothelial cells is a hallmark of diabetes vascular complications. Ras guanine-releasing protein 1 (RasGRP1) is a guanine nucleotide exchange factor for Ras, and its role in endothelial angiogenesis has not been investigated. Given the importance of Ras in vascular endothelial growth factor (VEGF)-induced angiogenesis, we hypothesized that RasGRP1 may be a critical pathway downstream of VEGF and involved in endothelial angiogenesis. Furthermore, we investigate whether RasGRP1-dependent VEGF signaling was downregulated under high glucose conditions mimicking diabetes and required for the endothelial protective action of metformin in human umbilical vein endothelial cells (HUVECs). HUVECs were transfected with either RasGRP1 small interfering RNA (siRNA) or pEnter-RasGRP1 plasmid to down- and upregulate RasGRP1 expression before different treatments, such as added VEGF or not, exposed to high glucose (35 mM) or normal glucose (5 mM) in the presence or absence of metformin. Expression of VEGF, RasGRP1, and their signaling targets were analyzed by Western blot; migration and tube formation were detected by transwell chamber assay and Matrigel angiogenesis assay, respectively. Knockdown of RasGRP1 significantly attenuated VEGF-induced migration and tube formation activities of HUVECs and activation of AKT pathway. The expression of VEGF, RasGRP1, and AKT phosphorylation was downregulated in HUVECs exposed to high glucose compared with normal glucose, whereas metformin upregulated the RasGRP1-dependent VEGF signaling and ameliorates the impaired angiogenesis caused by high glucose. RasGRP1 is involved in the VEGF-induced angiogenesis and the pro-angiogenesis effects of metformin under hyperglycemia. © 2019 IUBMB Life, 71(9):1391-1400, 2019.


Asunto(s)
Proteínas de Unión al ADN/genética , Complicaciones de la Diabetes/tratamiento farmacológico , Factores de Intercambio de Guanina Nucleótido/genética , Metformina/farmacología , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/genética , Movimiento Celular/genética , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación de la Expresión Génica/genética , Glucosa/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/genética , Hiperglucemia/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Proteínas Proto-Oncogénicas c-akt/genética , ARN Interferente Pequeño/farmacología , Transfección
10.
Soft Matter ; 15(17): 3507-3514, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30912540

RESUMEN

Cell adhesion is crucial for immune response, tissue formation, and cell locomotion. The adhesion process is mediated by the specific binding of membrane-anchored receptor and ligand proteins. These adhesion proteins are in contact with the membranes and may generate curvature, which has been shown for a number of membrane proteins to play an important role in membrane remodeling. An important question remains of whether the local membrane curvatures induced by the adhesion proteins affect their binding. We've performed Monte Carlo simulations of a mesoscopic model for membrane adhesion via the specific binding of curvature-inducing receptors and ligands. We find that the curvatures induced by the adhesion proteins do affect their binding equilibrium constant. We presented a theory that takes into account the membrane deformations and protein-protein interactions due to the induced curvatures, and agrees quantitatively with our simulation results. Our study suggests that the ability to induce membrane curvatures represents a molecular property of the adhesion proteins and should be carefully considered in experimental characterization of the binding affinity.


Asunto(s)
Membrana Celular/metabolismo , Método de Montecarlo , Receptores de Superficie Celular/metabolismo , Adhesión Celular , Ligandos , Unión Proteica
11.
Soft Matter ; 14(14): 2665-2670, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29561032

RESUMEN

Assembly of nanoparticles (NPs) coated with complementary DNA strands leads to novel crystals with nanosized basic units rather than classic atoms, ions or molecules. The assembly process is mediated by hybridization of DNA via specific base pairing interaction, and is kinetically linked to the disassociation of DNA duplexes. DNA-level physiochemical quantities, both thermodynamic and kinetic, are key to understanding this process and essential for the design of DNA-NP crystals. The melting transition properties are helpful to judge the thermostability and sensitivity of relative DNA probes or other applications. Three different cases are investigated by changing the linker length and the spacer length on which the melting properties depend using the molecular dynamics method. Melting temperature is determined by sigmoidal melting curves based on hybridization percentage versus temperature and the Lindemann melting rule simultaneously. We provide a computational strategy based on a coarse-grained model to estimate the hybridization enthalpy, entropy and free energy from percentages of hybridizations which are readily accessible in experiments. Importantly, the lifetime of DNA bond dehybridization based on temperature and the activation energy depending on DNA bond strength are also calculated. The simulation results are in good agreement with the theoretical analysis and the present experimental data. Our study provides a good strategy to predict the melting temperature which is important for the DNA-directed nanoparticle system, and bridges the dynamics and thermodynamics of DNA-directed nanoparticle systems by estimating the equilibrium constant from the hybridization of DNA bonds quantitatively.


Asunto(s)
ADN/química , Simulación de Dinámica Molecular , Nanopartículas/química , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Temperatura
12.
Soft Matter ; 13(23): 4294-4304, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28573272

RESUMEN

Gaining insights into the binding of membrane-anchored receptors and ligands that mediate cell adhesion and signal transduction is of great significance for understanding numerous physiological processes driven by intercellular communication. Lipid rafts, microdomains in cell membranes enriched in cholesterol and saturated lipids such as sphingomyelin, are believed to serve as the essential platforms to recruit protein molecules for biological functions. An important question remains how the lipid rafts affect the binding constant of membrane-anchored receptors and ligands. We have investigated the adhesion of multicomponent membranes by using Monte Carlo simulations of a mesoscopic model with biologically relevant parameters. We find that the preferential partitioning of membrane-anchored receptor and ligand proteins in the lipid rafts significantly increases the binding constant of those proteins, in cooperation with the shape fluctuations of the membranes caused by thermal excitations. The binding constant can even be greater than that of the same receptors and ligands anchored to two apposing supported, planar membranes without shape fluctuations. The membrane shape fluctuations facilitate the binding of the anchored receptors and ligands, in contrast to the case of homogeneous membranes. Our results suggest that cells might regulate the binding of membrane-anchored receptor and ligand proteins by modulating the properties of lipid rafts such as area fraction, size and the affinity of rafts to the proteins.

13.
Plant Cell Rep ; 36(3): 471-480, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27988788

RESUMEN

KEY MESSAGE: PDV2 has a dosage effect on chloroplast division in Arabidopsis thaliana , but this effect may vary in different plants. Chloroplasts have to be divided as plants grow to maintain an optimized number in the cell. Chloroplasts are divided by protein complexes across the double membranes from the stroma side to the cytosolic side. PDV2 is a chloroplast division protein on the chloroplast outer membrane. It recruits the dynamin-related GTPase ARC5 to the division site. The C-terminus of PDV2 and the C-terminus of ARC6 interact in the intermembrane space, which is important for the localization of PDV2. Previously, it was shown that overexpression of PDV2 can increase the division of chloroplasts in Arabidopsis and moss, so the authors concluded that PDV2 determines the rate of chloroplast division in land plants. PDV2 was also shown to inhibit the GTPase activity of ARC5 by in vitro experiment. These results look to be contradictory. Here, we identified a null allele of PDV2 in Arabidopsis and studied plants with different levels of PDV2. Our results suggested that the chloroplast division phenotype in Arabidopsis is sensitive to the level of PDV2, while this is not the case for ARC6. The level of PDV2 protein is reduced sharply in fast-growing leaves, while the level of ARC6 is not. The levels of PDV2 and ARC6 in several other plant species at different developmental stages were also investigated. The results indicated that their expression pattern varies in different species. Thus, PDV2 is an important positive factor of chloroplast division with an apparent dosage effect in Arabidopsis, but this effect for different chloroplast division proteins in different plants may vary.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos/genética , Dosificación de Gen , Proteínas de Arabidopsis/metabolismo , Mapeo Cromosómico , Clonación Molecular , Cruzamientos Genéticos , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutación/genética , Fenotipo , Desarrollo de la Planta/genética , Hojas de la Planta/genética , Especificidad de la Especie
14.
Soft Matter ; 12(20): 4572-83, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27102288

RESUMEN

Cell adhesion plays a pivotal role in various biological processes, e.g., immune responses, cancer metastasis, and stem cell differentiation. The adhesion behaviors depend subtly on the binding kinetics of receptors and ligands restricted at the cell-substrate interfaces. Although much effort has been directed toward investigating the kinetics of adhesion molecules, the role of the glycocalyx, anchored on cell surfaces as an exterior layer, is still unclear. In this paper, we propose a theoretical approach to study the collective binding kinetics of a few and a large number of binders in the presence of the glycocalyx, representing the cases of initial and mature adhesions of cells, respectively. The analytical results are validated by finding good agreement with our Monte Carlo simulations. In the force loading case, the on-rate and affinity increase as more bonds form, whereas this cooperative effect is not observed in the displacement loading case. The increased thickness and stiffness of the glycocalyx tend to decrease the affinity for a few bonds, while they have less influence on the affinity for a large number of bonds. Moreover, for a flexible membrane with thermally-excited shape fluctuations, the glycocalyx is exhibited to promote the formation of bond clusters, mainly due to the cooperative binding of binders. This study helps to understand the cooperative kinetics of adhesion receptors under physiologically relevant loading conditions and sheds light on the novel role of the glycocalyx in cell adhesion.


Asunto(s)
Glicocálix/metabolismo , Complejo GPIb-IX de Glicoproteína Plaquetaria/química , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Agregado de Proteínas , Elasticidad , Cinética , Método de Montecarlo , Unión Proteica , Termodinámica
15.
Soft Matter ; 12(40): 8316-8326, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27714355

RESUMEN

A wide spectrum of Peritrichous bacteria undergo considerable physiological changes when they are inoculated onto nutrition-rich surfaces and exhibit a rapid and collective migration denoted as swarming. Thereby, the length of such swarmer cells and their number of flagella increases substantially. In this article, we investigated the properties of individual E. coli-type swarmer cells confined between two parallel walls via mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the swarmer cell with the multiparticle particle collision dynamics approach for the embedding fluid. E. coli-type swarmer cells are three-times longer than their planktonic counter parts, but their flagella density is comparable. By varying the wall separation, we analyze the confinement effect on the flagella arrangement, on the distribution of cells in the gap between the walls, and on the cell dynamics. We find only a weak dependence of confinement on the bundle structure and dynamics. The distribution of cells in the gap changes from a geometry-dominated behavior for very narrow to fluid-dominated behavior for wider gaps, where cells are preferentially located in the gap center for narrower gaps and stay preferentially next to one of the walls for wider gaps. Dynamically, the cells exhibit a wide spectrum of migration behaviors, depending on their flagella bundle arrangement, and ranges from straight swimming to wall rolling.


Asunto(s)
Escherichia coli/fisiología , Flagelos/fisiología , Hidrodinámica
16.
Proc Natl Acad Sci U S A ; 110(38): 15283-8, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24006364

RESUMEN

Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.


Asunto(s)
Adhesión Celular/fisiología , Comunicación Celular/fisiología , Endocitosis/fisiología , Membranas/química , Modelos Moleculares , Receptores de Superficie Celular/química , Cinética , Membranas/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Receptores de Superficie Celular/metabolismo
17.
Soft Matter ; 11(40): 7867-76, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26256240

RESUMEN

The swimming properties of an E. coli-type model bacterium are investigated by mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the bacterium with the multiparticle particle collision dynamics method for the embedding fluid. The bacterium is composed of a spherocylindrical body with attached helical flagella, built up from discrete particles for an efficient coupling with the fluid. We measure the hydrodynamic friction coefficients of the bacterium and find quantitative agreement with experimental results of swimming E. coli. The flow field of the bacterium shows a force-dipole-like pattern in the swimming plane and two vortices perpendicular to its swimming direction arising from counterrotation of the cell body and the flagella. By comparison with the flow field of a force dipole and rotlet dipole, we extract the force-dipole and rotlet-dipole strengths for the bacterium and find that counterrotation of the cell body and the flagella is essential for describing the near-field hydrodynamics of the bacterium.


Asunto(s)
Escherichia coli/química , Escherichia coli/fisiología , Fenómenos Biomecánicos , Flagelos/química , Flagelos/fisiología , Hidrodinámica , Cinética , Modelos Biológicos , Simulación de Dinámica Molecular
18.
Soft Matter ; 11(33): 6642-51, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26212500

RESUMEN

An extensive and systematic calculation was performed to explore hierarchical cylindrical structures and the order-to-order transitions of AB diblock copolymers (f(A) = 0.3) on a saw-toothed substrate using self-consistent mean-field theory. We obtained fifteen relatively simple morphologies, including the existing morphologies observed experimentally and from simulations, and five more complicated structures, by varying the lateral periodicity of the substrate, the film thickness of diblock copolymers, the interaction between the A-block and the substrate and the tilt angles (or the shape) of the substrate. These structures show that the orientation and number of layers of cylinders can be tailored. Even lamellae and spherical microdomains were observed. Most interestingly, hierarchical structures are also observed, such as the morphology of C(ab)(//) within the upper cylinder perpendicular to the bottom cylinder, SC(b)(//) morphology that the upper is a cylinder but the bottom is a sphere. In addition, we discussed these complex hierarchical structures in detail and have analyzed the order-to-order transitions between the cylindrical morphologies with distinct orientations and layers.

19.
J Chem Phys ; 143(24): 243136, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26723621

RESUMEN

Adhesion processes of biological membranes that enclose cells and cellular organelles are essential for immune responses, tissue formation, and signaling. These processes depend sensitively on the binding constant K2D of the membrane-anchored receptor and ligand proteins that mediate adhesion, which is difficult to measure in the "two-dimensional" (2D) membrane environment of the proteins. An important problem therefore is to relate K2D to the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in three dimensions (3D). In this article, we present a general theory for the binding constants K2D and K3D of rather stiff proteins whose main degrees of freedom are translation and rotation, along membranes and around anchor points "in 2D," or unconstrained "in 3D." The theory generalizes previous results by describing how K2D depends both on the average separation and thermal nanoscale roughness of the apposing membranes, and on the length and anchoring flexibility of the receptors and ligands. Our theoretical results for the ratio K2D/K3D of the binding constants agree with detailed results from Monte Carlo simulations without any data fitting, which indicates that the theory captures the essential features of the "dimensionality reduction" due to membrane anchoring. In our Monte Carlo simulations, we consider a novel coarse-grained model of biomembrane adhesion in which the membranes are represented as discretized elastic surfaces, and the receptors and ligands as anchored molecules that diffuse continuously along the membranes and rotate at their anchor points.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Método de Montecarlo , Sitios de Unión , Adhesión Celular , Ligandos , Simulación de Dinámica Molecular
20.
J Chem Phys ; 143(24): 243137, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26723622

RESUMEN

The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.


Asunto(s)
Proteínas de la Membrana/química , Simulación de Dinámica Molecular , Sitios de Unión , Cinética , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA