Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Microbiol ; 202(4): 859-873, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31894394

RESUMEN

Network analysis has contributed to studies of the interactions of microorganisms and the identification of key populations. However, such analysis has rarely been conducted in the study of reservoir bacterioplankton communities. This study investigated the bacterioplankton community composition in the surface water of the Danjiangkou Reservoir using the Illumina MiSeq sequencing platform. We observed that the bacterioplankton community primarily consisted of 27 phyla and 336 genera, including Actinobacteria, Proteobacteria, and Bacteroidetes, demonstrating the richness of the community composition. Redundancy analysis of the bacterioplankton communities and environmental variables showed that the total nitrogen (TN), pH, chemical oxygen demand (COD), and permanganate index (CODMn) were important factors affecting the bacterioplankton distribution. Network analysis was performed using the relative abundances of bacterioplankton based on the phylogenetic molecular ecological network (pMEN) method. The connectivity of node i within modules (Zi), the connectivity of node i among modules (Pi), and the number of key bacteria were high at the Taizishan and Heijizui sites, which were associated with higher TN contents than at the other sites. Among the physicochemical properties of water, TN, ammonia nitrogen (NH4-N), pH, COD, and dissolved oxygen (DO) might have great influences on the functional units of the bacterial communities in bacterioplankton molecular networks. This study improves the understanding of the structure and function of bacterioplankton communities in the Danjiangkou Reservoir.


Asunto(s)
Organismos Acuáticos/clasificación , Bacterias/clasificación , Bacterias/genética , Agua Dulce/microbiología , Plancton/clasificación , Plancton/genética , Biodiversidad , China , Demografía , Agua Dulce/química , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Plancton/microbiología
2.
Huan Jing Ke Xue ; 39(8): 3591-3600, 2018 Aug 08.
Artículo en Zh | MEDLINE | ID: mdl-29998665

RESUMEN

Reservoir/lake sediments are potential pollutant acceptors and sources of pollution. The Danjiangkou Reservoir, as the largest drinking water source in China, is the source water area for the Mid-route Project of the South-North Water Diversion. To illustrate the temporal and spatial changes in the environmental risks of both nutrients and heavy metals in the surface sediments of Danjiangkou Reservoir, the levels of pH, OM, TP, TN, and six kinds of metal elements during the period 2011-2016 were measured at five ecological sites. Canadian freshwater sediment quality guidelines for aquatic environments (from the CCME) were used to assess the potential ecological risks. The results showed that the contents of OM, TP, and TN in the surface sediments were 25.85, 0.57, and 1.34 g·kg-1, respectively, and those of Cr, Mn, Cu, Zn, Cd, and Pb were 57.96, 521.78, 13.91, 195.74, 0.37, and 12.92 mg·kg-1, respectively. The contents of both Zn and Cd were under the corresponding Ⅱ-level standards of soil environmental quality, but the contents of the other four heavy metals were lower than their corresponding I-level standards. After water diversion of the Mid-route Project, the OM, TN, Mn, and Zn contents increased, and the TP and other heavy metal contents displayed downward trends. Excluding the pH value, the distribution of measured nutrients and heavy metals in the surface sediments of the Danjiangkou Reservoir reached the extremely significant level (P<0.01). OM in the sediments was negatively correlated with TN and Pb, but had positive correlations with the other indicators measured. The results from the potential ecological risk assessment showed that:①Cd, Cu, and Pb had no harmful effects on organisms; ② OM had low ecological risk in most years; ③ the risk of TP was between zero and low ecological risk; and ④Cr, Zn, and TN had low ecological risk in most cases. The K and H sites had higher ecological risk for Cr, Zn, and TN, thus attention should be paid to those cases. These results illustrate the effects of human activities on nutrients and heavy metals in surface sediments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA