Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Genet ; 19(3): e1010636, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857386

RESUMEN

Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
PLoS Pathog ; 19(3): e1011218, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36947557

RESUMEN

In plants, age-related resistance (ARR) refers to a gain of disease resistance during shoot or organ maturation. ARR associated with vegetative phase change, a transition from juvenile to adult stage, is a widespread agronomic trait affecting resistance against multiple pathogens. How innate immunity in a plant is differentially regulated during successive stages of shoot maturation is unclear. In this work, we found that Arabidopsis thaliana showed ARR against its bacterial pathogen Pseudomonas syringae pv. tomato DC3000 during vegetative phase change. The timing of the ARR activation was associated with a temporal drop of miR156 level. The microRNA miR156 maintains juvenile phase by inhibiting the accumulation and translation of SPL transcripts. A systematic inspection of the loss- and gain-of-function mutants of 11 SPL genes revealed that a subset of SPL genes, notably SPL2, SPL10, and SPL11, activated ARR in adult stage. The immune function of SPL10 was independent of its role in morphogenesis. Furthermore, the SPL10 mediated an age-dependent augmentation of the salicylic acid (SA) pathway partially by direct activation of PAD4. Disrupting SA biosynthesis or signaling abolished the ARR against Pto DC3000. Our work demonstrated that the miR156-SPL10 module in Arabidopsis is deployed to operate immune outputs over developmental timing.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/metabolismo , Ácido Salicílico/metabolismo
3.
Mol Plant Microbe Interact ; 36(12): 796-804, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37638673

RESUMEN

Temporospatial regulation of immunity components is essential for properly activating plant defense response. Flagellin-sensing 2 (FLS2) is a surface-localized receptor that recognizes bacterial flagellin. The immune function of FLS2 is compromised in early stages of shoot development. However, the underlying mechanism for the age-dependent FLS2 signaling is not clear. Here, we show that the reduced basal immunity of juvenile leaves against Pseudomonas syringae pv. tomato DC3000 is independent of FLS2. The flg22-induced marker gene expression and reactive oxygen species activation were comparable in juvenile and adult stages, but callose deposition was more evident in the adult stage than the juvenile stage. We further demonstrated that microRNA156, a master regulator of plant aging, does not influence the expression of FLS2 and FRK1 (Flg22-induced receptor-like kinase 1) but mildly suppresses callose deposition in juvenile leaves. Our experiments revealed an intrinsic mechanism that regulates the amplitude of FLS2-mediated resistance during aging. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Flagelina/farmacología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pseudomonas syringae/fisiología , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(31): 18832-18839, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32709746

RESUMEN

Plant and animal intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors detect pathogen-derived molecules and activate defense. Plant NLRs can be divided into several classes based upon their N-terminal signaling domains, including TIR (Toll-like, Interleukin-1 receptor, Resistance protein)- and CC (coiled-coil)-NLRs. Upon ligand detection, mammalian NAIP and NLRC4 NLRs oligomerize, forming an inflammasome that induces proximity of its N-terminal signaling domains. Recently, a plant CC-NLR was revealed to form an inflammasome-like hetero-oligomer. To further investigate plant NLR signaling mechanisms, we fused the N-terminal TIR domain of several plant NLRs to the N terminus of NLRC4. Inflammasome-dependent induced proximity of the TIR domain in planta initiated defense signaling. Thus, induced proximity of a plant TIR domain imposed by oligomerization of a mammalian inflammasome is sufficient to activate authentic plant defense. Ligand detection and inflammasome formation is maintained when the known components of the NLRC4 inflammasome is transferred across kingdoms, indicating that NLRC4 complex can robustly function without any additional mammalian proteins. Additionally, we found NADase activity of a plant TIR domain is necessary for plant defense activation, but NADase activity of a mammalian or a bacterial TIR is not sufficient to activate defense in plants.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Proteínas de Plantas , Proteínas Recombinantes de Fusión , Transducción de Señal , Animales , Inflamasomas/genética , Inflamasomas/inmunología , Inflamasomas/metabolismo , Mamíferos , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/inmunología , Proteínas NLR/metabolismo , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología
5.
Proc Natl Acad Sci U S A ; 115(41): 10218-10227, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30254172

RESUMEN

Plant intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors often function in pairs to detect pathogen effectors and activate defense. The Arabidopsis RRS1-R-RPS4 NLR pair recognizes the bacterial effectors AvrRps4 and PopP2 via an integrated WRKY transcription factor domain in RRS1-R that mimics the effector's authentic targets. How the complex activates defense upon effector recognition is unknown. Deletion of the WRKY domain results in an RRS1 allele that triggers constitutive RPS4-dependent defense activation, suggesting that in the absence of effector, the WRKY domain contributes to maintaining the complex in an inactive state. We show the WRKY domain interacts with the adjacent domain 4, and that the inactive state of RRS1 is maintained by WRKY-domain 4 interactions before ligand detection. AvrRps4 interaction with the WRKY domain disrupts WRKY-domain 4 association, thus derepressing the complex. PopP2-triggered activation is less easily explained by such disruption and involves the longer C-terminal extension of RRS1-R. Furthermore, some mutations in RPS4 and RRS1 compromise PopP2 but not AvrRps4 recognition, suggesting that AvrRps4 and PopP2 derepress the complex differently. Consistent with this, a "reversibly closed" conformation of RRS1-R, engineered in a method exploiting the high affinity of colicin E9 and Im9 domains, reversibly loses AvrRps4, but not PopP2 responsiveness. Following RRS1 derepression, interactions between domain 4 and the RPS4 C-terminal domain likely contribute to activation. Simultaneous relief of autoinhibition and activation may contribute to defense activation in many immune receptors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Proteínas Bacterianas/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Transferencia Resonante de Energía de Fluorescencia , Complejos Multiproteicos/inmunología , Mutación , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Plantas Modificadas Genéticamente , Conformación Proteica , Dominios Proteicos , Ralstonia solanacearum/patogenicidad , Nicotiana/genética , Nicotiana/inmunología
6.
Phytopathology ; 109(9): 1500-1508, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31192748

RESUMEN

Plant age is a crucial factor in determining the outcome of a host-pathogen interaction. In successive developmental stages throughout their life cycles, plants face dynamic changes in biotic and abiotic conditions that create distinct ecological niches for host-pathogen interactions. As an adaptive strategy, plants have evolved intrinsic regulatory networks that integrate developmental signals with those from pathogen perception and defense activation. As a result, amplitude and timing of defense responses are optimized, so as to balance the cost and benefit of immunity activation. A general term "age-related resistance" refers to a gain of disease resistance against a certain pathogen when plants reach a relatively mature stage. Age-related resistance is a common observation on fruits, vegetables, and row crops for their resistance against viruses, bacteria, fungi, oomycetes pathogens, and insects. This review focuses on the recent advances in understanding the molecular mechanisms of how plants coordinate developmental timing and immune response.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Animales , Hongos , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Plantas
7.
BMC Genomics ; 15: 1151, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25526808

RESUMEN

BACKGROUND: Small secreted proteins (SSPs) are employed by plant pathogenic fungi as essential strategic tools for their successful colonization. SSPs are often species-specific and so far only a few widely phylogenetically distributed SSPs have been identified. RESULTS: A novel fungal SSP family consisting of 107 members was identified in the poplar tree fungal pathogen Marssonina brunnea, which accounts for over 17% of its secretome. We named these proteins IGY proteins (IGYPs) based on the conserved three amino acids at the N-terminus. In spite of overall low sequence similarity among IGYPs; they showed conserved N- and C-terminal motifs and a unified gene structure. By RT-PCR-seq, we analyzed the IGYP gene models and validated their expressions as active genes during infection. IGYP homologues were also found in 25 other Dikarya fungal species, all of which shared conserved motifs and the same gene structure. Furthermore, 18 IGYPs from 11 fungi also shared similar genomic contexts. Real-time RT-PCR showed that 8 MbIGYPs were highly expressed in the biotrophic stage. Interestingly, transient assay of 12 MbIGYPs showed that the MbIGYP13 protein induced cell death in resistant poplar clones. CONCLUSIONS: In total, 154 IGYPs in 26 fungi of the Dikarya subkingdom were discovered. Gene structure and genomic context analyses indicated that IGYPs originated from a common ancestor. In M. brunnea, the expansion of highly divergent MbIGYPs possibly is associated with plant-pathogen arms race.


Asunto(s)
Ascomicetos/metabolismo , Secuencia Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ascomicetos/citología , Ascomicetos/genética , Ascomicetos/fisiología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Genómica , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Simbiosis
8.
Front Plant Sci ; 15: 1398770, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135651

RESUMEN

Introduction: As leaves grow, they transition from a low-microbe environment embedded in shoot apex to a more complex one exposed to phyllosphere microbiomes. Such change requires a coordinated reprogramming of cellular responses to biotic stresses. It remains unclear how plants shift from fast growth to robust resistance during organ development. Results: Here, we reported that salicylic acid (SA) accumulation and response were temporarily increased during leaf maturation in herbaceous annual Arabidopsis. Leaf primordia undergoing active cell division were insensitive to the elicitor-induced SA response. This age-dependent increase in SA response was not due to prolonged exposure to environmental microbes. Autoimmune mutants with elevated SA levels did not alter the temporal pattern dependent on ontogenic stage. Young Arabidopsis leaves were more susceptible than mature leaves to Pseudomonas syringae pv. tomato (Pto) DC3000 cor- infection. Finally, we showed a broadly similar pattern in cotton, a woody perennial, where young leaves with reduced SA signaling were preferentially invaded by a Xanthomonas pathogen after leaf surface infection. Discussion: Through this work, we provided insights in the SA-mediated ontogenic resistance in Arabidopsis and tomato.

9.
bioRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824838

RESUMEN

A temporal-spatial regulation of immunity components is essential for properly activating plant defense response. Flagellin-sensing 2 (FLS2) is a surface-localized receptor that recognizes bacterial flagellin. The immune function of FLS2 is compromised in early stages of shoot development. However, the underlying mechanism for the age-dependent FLS2 signaling is not clear. Here, we show that the reduced basal immunity of juvenile leaves against Pseudomonas syringae pv. tomato DC3000 is independent of FLS2. The flg22-induced marker gene expression and ROS activation were comparable in juvenile and adult stage, but callose deposition was more evident in the adult stage than that of juvenile stage. We further demonstrated that microRNA156, a master regulator of plant aging, suppressed callose deposition in juvenile leaves in response to flg22 but not the expression of FLS2 and FRK1 (Flg22-induced receptor-like kinase 1) . Altogether, we revealed an intrinsic mechanism that regulates the amplitude of FLS2-mediated resistance during aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA