Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemphyschem ; 18(23): 3329-3333, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-28910515

RESUMEN

Kagome lattices have attracted much attention owing to their potential applications in spin-frustrated magnetism and host-guest chemistry. Examples toward the fabrication of 2D Kagome lattices reported previously have in common that the precursor molecules were typically deposited on the surface structurally intact with no chemical reactions accompanied. Herein, by using a combination of synchrotron radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM), we demonstrated the fabrication of two types of chiral Kagome lattices from on-surface synthesized organometallic compounds, which are known as intermediates of Glaser coupling on silver single crystal surfaces. These Kagome lattices are stabilized by the interplay of various intermolecular interactions, including Br⋅⋅⋅Br bonds, C-Br⋅⋅⋅π bonds and π-π stacking. The chiral transference and host-guest supramolecular structure in the novel Kagome lattices were also studied. Our studies may pave a new way to engineer complex supramolecular networks through on-surface reactions.

2.
RSC Adv ; 14(9): 6234-6245, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38375012

RESUMEN

A magnetic field and pour point depressant, as a new avenue for improving the submarine pipeline flow of waxy oils, has attracted increasing attention along with the development of efficient wax mitigation techniques. Although advances have been made recently in understanding the rheological behavior and crystallization properties of waxy oils, the effect of magnetic field and pour point depressants on wax deposition remains an open question. In this work, a ferromagnetic nanocomposite pour point depressant (FNPPD) was prepared. The variations in wax deposition mass and component under the effect of different magnetic treatments and magnetic field-FNPPDs were investigated using cold fingers and high-temperature gas chromatography. It was evident that both the high-intensity and high-frequency magnetic fields generated by the magnet and magnetic coil can effectively reduce the deposition mass and have a long-term magnetic history effect. The synergistic effect of magnetic fields and FNPPDs concurrently reduced the thickness/mass and wax content in the deposition layer, as compared to the individual use of magnetic fields or FNPPDs. The wax precipitation properties and wax crystal morphology of waxy oils under the action of the magnetic field were characterized by differential scanning calorimetry, focused beam reflectance measurement and polarizing microscopy experiments, and the mechanism of the magnetic field was elaborated from the perspective of crystallization kinetics by combining the fitting analysis of Avrami and size-independent growth model.

3.
Langmuir ; 28(14): 6045-51, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22424149

RESUMEN

The model catalysts of ZrO(2)-supported Au nanoparticles have been prepared by deposition of Au atoms onto the surfaces of thin ZrO(2) films with different morphologies. The adsorption and thermal stability of Au nanoparticles on thin ZrO(2) films have been investigated using synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The thin ZrO(2) films were prepared by two different methods, giving rise to different morphologies. The first method utilized wet chemical impregnation to synthesize the thin ZrO(2) film through the procedure of first spin-coating a zirconium ethoxide (Zr(OC(2)H(5))(4)) precursor onto a SiO(2)/Si(100) substrate at room temperature followed by calcination at 773 K for 12 h. Scanning electron microscopy (SEM) investigations indicate that highly porous "sponge-like nanostructures" were obtained in this case. The second method was epitaxial growth of a ZrO(2)(111) film through vacuum evaporation of Zr metal onto Pt(111) in 1 × 10(-6) Torr of oxygen at 550 K followed by annealing at 1000 K. The structural analysis with low energy electron diffraction (LEED) of this film exhibits good long-range ordering. It has been found that Au forms smaller particles on the porous ZrO(2) film as compared to those on the ordered ZrO(2)(111) film at a given coverage. Thermal annealing experiments demonstrate that Au particles are more thermally stable on the porous ZrO(2) surface than on the ZrO(2)(111) surface, although on both surfaces, Au particles experience significant sintering at elevated temperatures. In addition, by annealing the surfaces to 1100 K, Au particles desorb completely from ZrO(2)(111) but not from porous ZrO(2). The enhanced thermal stability for Au on porous ZrO(2) can be attributed to the stronger interaction of the adsorbed Au with the defects and the hindered migration or coalescence resulting from the porous structures.

4.
J Chem Phys ; 136(15): 154705, 2012 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-22519341

RESUMEN

The growth and electronic structure of vapor-deposited Sm on a well-ordered Al(2)O(3)/Ni(3)Al(111) ultrathin film under ultrahigh vacuum conditions at room temperature have been studied comprehensively using synchrotron radiation photoemission spectroscopy, X-ray photoelectron spectroscopy, work function measurements, scanning tunneling microscopy, and low-energy electron diffraction. Our results indicate that at room temperature Sm grows in a layer-by-layer fashion up to at least 1 ML, followed by three-dimensional growth. The interaction of Sm with Al(2)O(3) thin films leads to an initial oxidation of Sm, accompanied by a parallel reduction of the Al(2)O(3) substrate. Both the oxidation states of Sm(2+) and Sm(3+) are found at low coverage (<1 ML). The concentration of Sm(2+) saturates below 0.4 ML, while that of Sm(3+) keeps increasing until the metallic state of Sm appears at high coverages.

5.
Chem Commun (Camb) ; 55(41): 5825-5828, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31041937

RESUMEN

A highly ordered copper(i) oxide film grown on a Pt(111) substrate exhibits extremely high reactivity to CO molecules. Systematic scanning tunneling microscopy experiments in combination with density-functional theory calculations demonstrate that the reaction occurs at the peripheries of the Cu2O islands where low-coordinated oxygen atoms are located.

6.
ACS Nano ; 12(9): 9033-9039, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30130397

RESUMEN

Tautomerization of nucleobases may induce base mismatches resulting in the abnormal disturbance of gene replication and expression, which has therefore attracted widespread interests in many disciplines. Metal atoms participating in a variety of important biological processes are found to be able to affect the nucleobase tautomerization as evidenced by many theoretical and spectroscopic studies. To get the real-space evidence and to unravel the underlying mechanism for the metal-induced tautomerization, especially from the keto form to the enol one, the interplay of high-resolution scanning tunneling microscopy imaging/manipulation and density functional theory (DFT) calculations has been employed. We present a process showing the Ni adatom-induced keto-enol tautomeric dehydrogenation of thymine molecules on Au(111). The key to making such a process feasible is the Ni atoms which greatly lower the energy barrier for the tautomerization from keto to enol form, which is rationalized by extensive DFT-based transition-state search calculations.

7.
ACS Nano ; 12(8): 7959-7966, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30016072

RESUMEN

Conductive polymers are of great importance in a variety of chemistry-related disciplines and applications. The recently developed bottom-up on-surface synthesis strategy provides us with opportunities for the fabrication of various nanostructures in a flexible and facile manner, which could be investigated by high-resolution microscopic techniques in real space. Herein, we designed and synthesized molecular precursors functionalized with benzal  gem-dibromomethyl groups. A combination of scanning tunneling microscopy, noncontact atomic force microscopy, high-resolution synchrotron radiation photoemission spectroscopy, and density functional theory calculations demonstrated that it is feasible to achieve the direct formation of C-C double-bonded structural motifs via on-surface dehalogenative homocoupling reactions on the Au(111) surface. Correspondingly, we convert the sp3-hybridized state to an sp2-hybridized state of carbon atoms, i. e., from an alkyl group to an alkenyl one. Moreover, by such a bottom-up strategy, we have successfully fabricated poly(phenylenevinylene) chains on the surface, which is anticipated to inspire further studies toward understanding the nature of conductive polymers at the atomic scale.

8.
Nat Commun ; 9(1): 2533, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955067

RESUMEN

Transition metal dichalcogenide materials have been explored extensively as catalysts to negotiate the hydrogen evolution reaction, but they often run at a large excess thermodynamic cost. Although activating strategies, such as defects and composition engineering, have led to remarkable activity gains, there remains the requirement for better performance that aims for real device applications. We report here a phosphorus-doping-induced phase transition from cubic to orthorhombic phases in CoSe2. It has been found that the achieved orthorhombic CoSe2 with appropriate phosphorus dopant (8 wt%) needs the lowest overpotential of 104 mV at 10 mA cm-2 in 1 M KOH, with onset potential as small as -31 mV. This catalyst demonstrates negligible activity decay after 20 h of operation. The striking catalysis performance can be attributed to the favorable electronic structure and local coordination environment created by this doping-induced structural phase transition strategy.

9.
Chem Commun (Camb) ; 50(61): 8291-4, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24871136

RESUMEN

In situ metalation of tetraphenylporphyrin (2HTPP) (sub)monolayers with Ni on a TiO2(110) surface to nickel(II)-tetraphenylporphyrin (NiTPP) depends on temperature and order of deposition, and affects conformation and bonding geometry of the porphyrin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA