Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Immunol ; 44(3): 25-35, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38421703

RESUMEN

Homeobox A1 (HOXA1) is a protein coding gene involved in regulating immunity signaling. This study aims to explore the function and mechanism of HOXA1 in asthma. An asthma mouse model was established via ovalbumin (OVA) induction. Airway hyperresponsiveness was evaluated by the value of pause enhancement (Penh). Inflammatory cells in bronchoalveolar lavage fluid (BALF) were detected by Trypan blue and Wright staining. The pathological morphology of lung tissues was assessed by H&E staining. The IgE and inflammatory biomarkers (IL-1ß, IL-6, IL-17, and TNF-α) in BALF and lung tissues were measured by ELISA. Western blot was performed to detect the expression of NF-κB pathway-related proteins. HOXA1 was down-regulated in OVA-induced asthmatic mice. Overexpression of HOXA1 decreased Penh and relieved pathological injury of lung tissues in OVA-induced mice. Overexpression of HOXA1 also reduced the numbers of total cells, leukocytes, eosinophils, neutrophils, macrophages, and lymphocytes, as well as the levels of IgE, IL-1ß, IL-6, IL-17, and TNF-α in BALF of OVA-induced mice. The inflammatory biomarkers were also decreased in lung tissues by HOXA1 overexpression. In addition, HOXA1 overexpression blocked the NF-κB signaling pathway in OVA-induced mice. Overexpression of HOXA1 relieved OVA-induced asthma in female mice, which is associated with the blocking of the NF-κB signaling pathway.


Asunto(s)
Asma , FN-kappa B , Femenino , Humanos , Animales , Ratones , Ovalbúmina , Interleucina-17 , Genes Homeobox , Interleucina-6 , Factor de Necrosis Tumoral alfa , Transducción de Señal , Asma/inducido químicamente , Interleucina-1beta , Biomarcadores , Inmunoglobulina E
2.
Small ; : e2400357, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778724

RESUMEN

The Fenton reaction, induced by the H2O2 formed during the oxygen reduction reaction (ORR) process leads to significant dissolution of Fe, resulting in unsatisfactory stability of the iron-nitrogen-doped carbon catalysts (Fe-NC). In this study, a strategy is proposed to improve the ORR catalytic activity while eliminating the effect of H2O2 by introducing CeO2 nanoparticles. Transmission electron microscopy and subsequent characterizations reveal that CeO2 nanoparticles are uniformly distributed on the carbon substrate, with atomically dispersed Fe single-atom catalysts (SACs) adjacent to them. CeO2@Fe-NC achieves a half-wave potential of 0.89 V and a limiting current density of 6.2 mA cm-2, which significantly outperforms Fe-NC and commercial Pt/C. CeO2@Fe-NC also shows a half-wave potential loss of only 1% after 10 000 CV cycles, which is better than that of Fe-NC (7%). Further, H2O2 elimination experiments show that the introduction of CeO2 significantly accelerate the decomposition of H2O2. In situ Raman spectroscopy results suggest that CeO2@Fe-NC significantly facilitates the formation of ORR intermediates compared with Fe-NC. The Zn-air batteries utilizing CeO2@Fe-NC cathodes exhibit satisfactory peak power density and open-circuit voltage. Furthermore, theoretical calculations show that the introduction of CeO2 enhances the ORR activity of Fe-NC SAC. This study provides insights for optimizing SAC-based electrocatalysts with high activity and stability.

3.
Small ; : e2400087, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377283

RESUMEN

Increasing the charging cutoff voltage of LiCoO2 to 4.6 V is significant for enhancing battery density. However, the practical application of Li‖LiCoO2 batteries with a 4.6 V cutoff voltage faces significant impediments due to the detrimental changes under high voltage. This study presents a novel bifunctional electrolyte additive, 2-(trifluoromethyl)benzamide (2-TFMBA), which is employed to establish a stable and dense cathode-electrolyte interface (CEI). Characterization results reveal that an optimized CEI is achieved through the synergistic effects of the amide groups and trifluoromethyl groups within 2-TFMBA. The resulting CEI not only enhances the structural stability of LiCoO2 but also serves as a high-speed lithium-ion conduction channel, which expedites the insertion and extraction of lithium ions. The Li‖LiCoO2 batteries with 0.5 wt% 2-TFMBA achieves an 84.7% capacity retention rate after enduring 300 cycles at a current rate of 1 C, under a cut-off voltage of 4.6 V. This study provides valuable strategic insights into the stabilization of cathode materials in high-voltage batteries.

4.
Opt Express ; 32(11): 19242-19251, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859063

RESUMEN

Micro-mirror optical fiber hydrogen sensors have the advantages of compact structure and fast demodulation speed. All-optical sensor networks consisting of micro-mirror optical fiber hydrogen sensors are essentially necessary across the hydrogen value chain. A bus chain topology structure hydrogen leakage detecting system based on micro-mirror sensors is proposed and experimentally demonstrated. A compensating optical path with constant power supply is introduced, and the power dissipation scheme is theoretically and experimentally proposed by designating the splitting ratios of the splitters array. By constructing such a network with twenty micro-mirror hydrogen sensors, the system has been experimentally verified with good repeatability and stability under different concentrations of hydrogen. By employing this bus chain topology strategy, a quasi-distributed optical fiber hydrogen leakage detection system with micro-mirror hydrogen sensors array is realized. It will provide a promising solution with high feasibility on multi-point leakage detecting in hydrogen infrastructures.

5.
Opt Lett ; 49(11): 2962-2965, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824303

RESUMEN

A novel, to the best of our knowledge, and compact fiber-optic hydrogen sensor based on light intensity demodulation and controllable optical heating technology is proposed and experimentally investigated. This system employs three photodetectors for optic signal transformation. The first PD is used to receive a little fraction of the amplified spontaneous emission (ASE) for calibration, and the second PD is utilized to detect optic signal reflected by a single mode fiber deposited with WO3-Pd2Pt-Pt composite film. The last PD is utilized to receive the optical power reflected by the short fiber Bragg grating (SFBG) with a central wavelength located in a steep wavelength range (the intensity decreases approximately linearly with the increase of the wavelength) of the ASE light source. A 980 nm laser and proportion integration differentiation (PID) controller were employed to ensure the hydrogen sensitive film working at an operating temperature of 60°C. This sensing system can display a quick response time of 0.4 s toward 10,000 ppm hydrogen in air. In addition, the detection limit of 5 ppm in air can be achieved with this sensing system. The stability of this sensor can be greatly enhanced with a controllable optical heating system, which can greatly promote its potential application in various fields.

6.
Chemistry ; 30(17): e202303711, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38143240

RESUMEN

Carbon dioxide electroreduction reaction (CO2RR) can take full advantage of sustainable power to reduce the continuously increasing carbon emissions. Recycling CO2 to produce formic acid or formate is a technologically and economically viable route to accomplish CO2 cyclic utilization. Developing efficient and cost-effective electrocatalysts with high selectivity towards formate is prioritized for the industrialized applications of CO2RR electrolysis. From the previous explored CO2RR catalysts, Sn, Bi and In based materials have drawn increasing attentions due to the high selectivity towards formate. However, there are still confronted with several challenges for the practical applications of these materials. Therefore, a rational design of the catalysts for formate is urgently needed for the target of industrialized applications. Herein, we comprehensively summarized the recent development in the advanced electrocatalysts for the CO2RR to formate. Firstly, the reaction mechanism of CO2RR is introduced. Then the preparation and design strategies of the highly active electrocatalysts are presented. Especially the innovative design mechanism in engineering materials for promoting catalytic performance, and the efforts on mechanistic exploration using in situ (ex situ) characterization techniques are reviewed. Subsequently, some perspectives and expectations are proposed about current challenges and future potentials in CO2RR research.

7.
Chem Rev ; 122(23): 17155-17239, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36239919

RESUMEN

The ever-increasing demand for flexible and portable electronics has stimulated research and development in building advanced electrochemical energy devices which are lightweight, ultrathin, small in size, bendable, foldable, knittable, wearable, and/or stretchable. In such flexible and portable devices, semi-solid/solid electrolytes besides anodes and cathodes are the necessary components determining the energy/power performances. By serving as the ion transport channels, such semi-solid/solid electrolytes may be beneficial to resolving the issues of leakage, electrode corrosion, and metal electrode dendrite growth. In this paper, the fundamentals of semi-solid/solid electrolytes (e.g., chemical composition, ionic conductivity, electrochemical window, mechanical strength, thermal stability, and other attractive features), the electrode-electrolyte interfacial properties, and their relationships with the performance of various energy devices (e.g., supercapacitors, secondary ion batteries, metal-sulfur batteries, and metal-air batteries) are comprehensively reviewed in terms of materials synthesis and/or characterization, functional mechanisms, and device assembling for performance validation. The most recent advancements in improving the performance of electrochemical energy devices are summarized with focuses on analyzing the existing technical challenges (e.g., solid electrolyte interphase formation, metal electrode dendrite growth, polysulfide shuttle issue, electrolyte instability in half-open battery structure) and the strategies for overcoming these challenges through modification of semi-solid/solid electrolyte materials. Several possible directions for future research and development are proposed for going beyond existing technological bottlenecks and achieving desirable flexible and portable electrochemical energy devices to fulfill their practical applications. It is expected that this review may provide the readers with a comprehensive cross-technology understanding of the semi-solid/solid electrolytes for facilitating their current and future researches on the flexible and portable electrochemical energy devices.


Asunto(s)
Suministros de Energía Eléctrica , Electrólitos , Electrodos , Electrónica , Programas Informáticos
8.
Environ Res ; 248: 118267, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244969

RESUMEN

In recent years, the utilization of wastewater recycling as an alternative water source has gained significant traction in addressing urban water shortages. Accurate prediction of wastewater quantity is paramount for effective urban river water resource management. There is an urgent need to develop advanced forecasting technologies to further enhance the accuracy and efficiency of water quantity predictions. Decomposition ensemble models have shown excellent predictive capabilities but are challenged by boundary effects when decomposing the original data sequence. To address this, a rolling forecast decomposition ensemble scheme was developed. It involves using a machine learning (ML) model for prediction and progressively integrating prediction outcomes into the original sequence using complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Long short-term memory (LSTM) is then applied for sub-signal prediction and ensemble. The ML-CEEMDAN-LSTM model was introduced for wastewater quantity prediction, compared with non-decomposed ML models, CEEMDAN-based LSTM models, and ML-CEEMDAN-based LSTM models. Three ML algorithms-linear regression (LR), gradient boosting regression (GBR), and LSTM-were examined, using real-time prediction data and historical monitoring data, with historical data selected using the decision tree method. The study used daily water volumes data from two reclaimed water plants, CH and WQ, in Beijing. The results indicate that (1) ML models varied in their selection of real-time factors, with LR performing best among ML models during testing; (2) the ML-CEEMDAN-LSTM model consistently outperformed ML models; (3) the ML-CEEMDAN-LSTM hybrid model performed better than the CEEMDAN-LSTM model across different seasons. This study offers a reliable and accurate approach for reclaimed water volumes forecasting, critical for effective water environment management.


Asunto(s)
Ríos , Agua , Conservación de los Recursos Naturales , Aguas Residuales , Agua Dulce , Predicción
9.
Neurol Sci ; 45(5): 2063-2073, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38049551

RESUMEN

OBJECTIVE: This study aimed to examine the volumes of thalamic nuclei and the intrinsic thalamic network in patients with Wilson's disease (WDs), and to explore the correlation between these volumes and the severity of neurological symptoms. METHODS: A total of 61 WDs and 33 healthy controls (HCs) were included in the study. The volumes of 25 bilateral thalamic nuclei were measured using structural imaging analysis with Freesurfer, and the intrinsic thalamic network was evaluated through structural covariance network (SCN) analysis. RESULTS: The results indicated that multiple thalamic nuclei were smaller in WDs compared to HCs, including mediodorsal medial magnocellular (MDm), anterior ventral (AV), central median (CeM), centromedian (CM), lateral geniculate (LGN), limitans-suprageniculate (L-Sg), reuniens-medial ventral (MV), paracentral (Pc), parafascicular (Pf), paratenial (Pt), pulvinar anterior (PuA), pulvinar inferior (PuI), pulvinar medial (PuM), ventral anterior (VA), ventral anterior magnocellular (VAmc), ventral lateral anterior (VLa), ventral lateral posterior (VLp), ventromedial (VM), ventral posterolateral (VPL), and right middle dorsal intralaminar (MDI). The study also found a negative correlation between the UWDRS scores and the volume of the right MDm. The intrinsic thalamic network analysis showed abnormal topological properties in WDs, including increased mean local efficiency, modularity, normalized clustering coefficient, small-world index, and characteristic path length, and a corresponding decrease in mean node betweenness centrality. WDs with cerebral involvement had a lower modularity compared to HCs. CONCLUSIONS: The findings suggest that the majority of thalamic nuclei in WDs exhibit significant volume reduction, and the atrophy of the right MDm is closely related to the severity of neurological symptoms. The intrinsic thalamic network in WDs demonstrated abnormal topological properties, indicating a close relationship with neurological impairment.


Asunto(s)
Degeneración Hepatolenticular , Humanos , Degeneración Hepatolenticular/complicaciones , Degeneración Hepatolenticular/diagnóstico por imagen , Núcleos Talámicos/diagnóstico por imagen , Tálamo/diagnóstico por imagen
10.
Chem Soc Rev ; 52(22): 7802-7847, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37869994

RESUMEN

To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.

11.
Angew Chem Int Ed Engl ; 63(10): e202318149, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38169516

RESUMEN

Aqueous Zn-based batteries have emerged as compelling candidates for grid-scale energy storage, owing to their intrinsic safety, remarkable theoretical energy density and cost-effectiveness. Nonetheless, the dendrite formation, side reactions, and corrosion on anode have overshadowed their practical applications. Herein, we present an in situ grown carbon network reinforcing Zn matrix anode prepared by powder metallurgy. This carbon network provides an uninterrupted internal electron transport pathway and optimize the surface electric field distribution, thereby enabling highly reversible Zn deposition. Consequently, symmetrical cells demonstrate impressive stability, running for over 880 h with a low voltage hysteresis (≈32 mV). Furthermore, this Zn matrix composite anode exhibits enhanced performance in both the aqueous Zn-ion and the Zn-air batteries. Notably, Zn//MnO2 cells display superior rate capabilities, while Zn-air batteries deliver high power density and impressive Zn utilization rate (84.9 %). This work provides a new idea of powder metallurgy method for modified Zn anodes, showcasing potential for large-scale production.

12.
Angew Chem Int Ed Engl ; 63(1): e202316116, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37983741

RESUMEN

The water-soluble salt-template technique holds great promise for fabricating 3D porous materials. However, an equipment-free and pore-size controllable synthetic approach employing salt-template precursors at room temperature has remained unexplored. Herein, we introduce a green room-temperature antisolvent precipitation strategy for creating salt-template self-assembly precursors to universally produce 3D porous materials with controllable pore size. Through a combination of theoretical simulations and advanced characterization techniques, we unveil the antisolvent precipitation mechanism and provide guidelines for selecting raw materials and controlling the size of precipitated salt. Following the calcination and washing steps, we achieve large-scale and universal production of 3D porous materials and the recycling of the salt templates and antisolvents. The optimized nitrogen-doped 3D porous carbon (N-3DPC) materials demonstrate distinctive structural benefits, facilitating a high capacity for potassium-ion storage along with exceptional reversibility. This is further supported by in situ electrochemical impedance spectra, in situ Raman spectroscopy, and theoretical calculations. The anode shows a high rate capacity of 181 mAh g-1 at 4 A g-1 in the full cell. This study addresses the knowledge gap concerning the room-temperature synthesis of salt-template self-assembly precursors for the large-scale production of porous materials, thereby expanding their potential applications for electrochemical energy conversion and storage.

13.
Angew Chem Int Ed Engl ; 63(9): e202316640, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38146810

RESUMEN

The catalyst-reconstruction makes it challenging to clarify the practical active sites and unveil the actual reaction mechanism during the CO2 electroreduction reaction (CO2 RR). However, currently the impact of the electrolyte microenvironment in which the electrolyte is in contact with the catalyst is overlooked and might induce a chemical evolution, thus confusing the reconstruction process and mechanism. In this work, the carbonate adsorption properties of metal oxides were investigated, and the mechanism of how the electrolyte carbonate affect the chemical evolution of catalysts were discussed. Notably, Bi2 O3 with weak carbonate adsorption underwent a chemical reconstruction to form the Bi2 O2 CO3 /Bi2 O3 heterostructure. Furthermore, in situ and ex situ characterizations unveiled the formation mechanism of the heterostructure. The in situ formed Bi2 O2 CO3 /Bi2 O3 heterostructure with strong electron interaction served as the highly active structure for CO2 RR, achieving a formate Faradaic efficiency of 98.1 % at -0.8 Vvs RHE . Theoretical calculations demonstrate that the significantly tuned p-orbit electrons of the Bi sites in Bi2 O2 CO3 /Bi2 O3 optimized the adsorption of the intermediate and lowered the energy barrier for the formation of *OCHO. This work elucidates the mechanism of electrolyte microenvironment for affecting catalyst reconstruction, which contributes to the understanding of reconstruction process and clarification of the actual catalytic structure.

14.
Angew Chem Int Ed Engl ; 63(27): e202401238, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651232

RESUMEN

Emerging high entropy compounds (HECs) have attracted huge attention in electrochemical energy-related applications. The features of ultrafine size and carbon incorporation show great potential to boost the ion-storage kinetics of HECs. However, they are rarely reported because high-temperature calcination tends to result in larger crystallites, phase separation, and carbon reduction. Herein, using the NaCl self-assembly template method, by introducing a high-pressure field in the calcination process, the atom diffusion and phase separation are inhibited for the general formation of HECs, and the HEC aggregation is inhibited for obtaining ultrafine size. The general preparation of ultrafine-sized (<10 nm) HECs (nitrides, oxides, sulfides, and phosphates) anchored on porous carbon composites is realized. They are demonstrated by combining advanced characterization technologies with theoretical computations. Ultrafine-sized high entropy sulfides-MnFeCoCuSnMo/porous carbon (HES-MnFeCoCuSnMo/PC) as representative anodes exhibit excellent sodium-ion storage kinetics and capacities (a high rating capacity of 278 mAh g-1 at 10 A g-1 for full cell and a high cycling capacity of 281 mAh g-1 at 20 A g-1 after 6000 cycles for half cell) due to the combining advantages of high entropy effect, ultrafine size, and PC incorporation. Our work provides a new opportunity for designing and fabricating ultrafine-sized HECs.

15.
J Am Chem Soc ; 145(3): 1924-1935, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36571792

RESUMEN

High-entropy compounds with extraordinary properties due to the synergistic effect of multiple components have exhibited great potential and attracted extensive attention in various fields, including physics, mechanical property analysis, and energy storage. Achieving universal stability and synthesis of high-entropy compounds with a wide range of components and structures continues to be difficult due to the high complexity of multicomponent mixing. Here, we propose a design strategy with high generality for realizing the stability and synthesis of high-entropy compounds that one metal site like the framework in the compound structures with bimetallic sites stabilizes another site to accommodate different elements. Several typical metal compounds with bimetallic sites, including perovskite hydroxides, layered double hydroxide, spinel sulfide, perovskite fluoride, and spinel oxides, have been synthesized into high-entropy compounds. High-entropy perovskite hydroxides (HEPHs) as representative compounds have been synthesized with a highly wide range of components even a septenary component and exhibit great oxygen evolution activity. Our work provides a design platform to develop more high-entropy compound systems with promising development potential for electrocatalysts.

16.
Opt Lett ; 48(1): 73-76, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563372

RESUMEN

A novel, to the best of our knowledge, sensor architecture for palladium-coated fiber Bragg gratings is proposed and demonstrated that allows highly accurate multi-parameter sensing and decoupling of hydrogen concentration from temperature. By means of partly Pd-coated Pi-shifted FBGs (PSFBGs), the notch wavelength of the narrow transmission band and the flank wavelength of the broader reflection band experience different hydrogen and temperature sensitivities. PSFBGs were calibrated at hydrogen concentrations between 800 and 10,000 ppm and temperatures from 20 to 40°C, and a decreased hydrogen sensitivity at increased temperatures was found. Nonlinear temperature-dependent hydrogen calibration functions were therefore determined. An iterative matrix algorithm was used to decouple hydrogen concentration and temperature and to account for the nonlinear calibration functions. Achieved improvements and results have great importance for real field applications of FBG-based hydrogen sensing.

17.
Int J Clin Pract ; 2023: 9344891, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915635

RESUMEN

Methods: We retrospectively screened individuals with serum Cp ≥ 140 mg/L from 1032 WD patients who were hospitalised for the first time. Logistic regression analyses were performed in a case-control study between the WD cohort and another liver disease cohort to explore the independent risk factors for WD diagnosis and establish a regression model to identify them. The follow-up medical records of the WD cohort were subjected to mixed-effects model analysis in a longitudinal study to discover factors associated with Cp normalisation. Results: Eighty-six WD patients and their 353 medical records and another 98 non-WD liver disease patients were included in the present study. Cp normalisation was significantly associated with the copper burden and liver function indexes, such as urinary copper, γ-glutamyltransferase, and albumin (p ≤ 0.001). Logistic regression analysis showed that age and serum creatinine (p ≤ 0.001) were independent risk factors associated with WD. The AUC value of the regression model in the total cohort was 0.926 (p ≤ 0.001). At a cutoff value of ≥0.617 and ≥-1, the positive and negative predictive values were both 90.8% for WD. Conclusion: Increased serum Cp in WD patients is related to excessive copper burden and hepatic injury, and common tests can effectively distinguish WD patients from other liver injury patients.


Asunto(s)
Degeneración Hepatolenticular , Humanos , Degeneración Hepatolenticular/diagnóstico , Degeneración Hepatolenticular/complicaciones , Ceruloplasmina/análisis , Ceruloplasmina/metabolismo , Cobre/metabolismo , Creatinina , Estudios Retrospectivos , Estudios de Casos y Controles , Estudios Longitudinales
18.
Nano Lett ; 22(16): 6492-6500, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35950973

RESUMEN

High-entropy oxide (HEO) including multiple principal elements possesses great potential for various fields such as basic physics, mechanical properties, energy storage, and catalysis. However, the synthesis method of high-entropy compounds through the traditional heating approach is not conducive to the rapid properties screening, and the current elemental combinations of HEO are also highly limited. Herein, we report a rapid synthesis method for HEO through the Joule-heating of nickel foil with dozens of seconds. High-entropy rocksalt oxides (HERSO) with the new elemental combination, high-entropy spinel oxides (HESO), and high-entropy perovskite oxide (HEPO) have been synthesized through the Joule-heating. The synthesized HERSO with new elemental combinations proves to be a great promotion of OER activity due to the synergy of multiple components and the continuous electronic structure experimentally and theoretically. The demonstrated synthesis approach and the new component combination of HERSO provide a broad platform for the development of high-entropy materials and catalysts.

19.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511162

RESUMEN

Self-incompatible pitaya varieties have low fruit-setting rates under natural conditions, leading to higher production costs and hindering industrial prosperity. Through transcriptome sequencing, we obtained the 36,900 longest transcripts (including 9167 new transcripts) from 60 samples of flowers. Samples were collected pre- and post-pollination (at 0 h, 0.5 h, 2 h, 4 h, and 12 h) from two varieties of pitaya (self-compatible Jindu No. 1 and self-incompatible Cu Sha). Using the RNA-Seq data and comparison of reference genomes, we annotated 28,817 genes in various databases, and 1740 genes were optimized in their structure for annotation. There were significant differences in the expression of differentially expressed genes (DEGs) in the pitaya stigmas under different pollination types, especially at the late post-pollination stage, where the expression of protease genes increasedal significantly under cross-pollination. We identified DEGs involved in the ribosomal, ubiquitination-mediated, and phyto-signaling pathways that may be involved in pitaya SI regulation. Based on the available transcriptome data and bioinformatics analysis, we tentatively identified HuS-RNase2 as a candidate gynogenetic S gene in the pitaya GSI system.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Flores/genética , Flores/metabolismo , RNA-Seq , Transducción de Señal/genética , Polinización/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
J Environ Manage ; 347: 119107, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37801947

RESUMEN

Spent selective catalytic reduction (SCR) catalysts are environmentally hazardous and resource-enriching. In this work, V, W, and As in a spent SCR catalyst was extracted by alkali pressure leaching. Results showed that the V, W, and As were loaded on the anatase TiO2 crystal grains as amorphous oxides. The optimum pressure leaching conditions were NaOH concentration of 20 wt%, reaction temperature of 180 °C, reaction time of 120 min, L/S of 10 mL/g, and stirring speed of 300 rpm. The leaching efficiency of W, V, and As reached 98.83%, 100%, and 100%, respectively. The experiment revealed the preferential leaching of V and As rather than W, and the leaching mechanisms of V, W, and As were studied through experiment and density functional theory (DFT). The leaching kinetics of W conformed to a variant of the shrinking core model and the leaching process of W is controlled by both chemical reactions and diffusion processes. During the leaching process, Na2Ti2O4(OH)2 product powder layer was generated, which affects the mass transfer of W. The destruction of the TiO2 skeleton in the spent SCR catalyst is essential for adequate W extraction, especially for the extraction of W embedded in the TiO2 lattice. The DFT simulation result indicated that the V and As loaded onto the TiO2 support are easier to absorb hydroxide ions rather than W, and the leaching reaction energy of V and As was lower than W, As, and V has leaching priority over the leaching of W. Furthermore, an anatase TiO2 photocatalyst with the {001} crystal surface exposed was successfully prepared from the alkali pressure leaching residue. This work provides theoretical support for the metal leaching and utilization of spent SCR catalysts via alkali pressure leaching.


Asunto(s)
Álcalis , Titanio , Álcalis/química , Titanio/química , Metales , Óxidos/química , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA