Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Microbiol ; 121(5): 971-983, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38480679

RESUMEN

Increasing evidence suggests that DNA phosphorothioate (PT) modification serves several purposes in the bacterial host, and some restriction enzymes specifically target PT-DNA. PT-dependent restriction enzymes (PDREs) bind PT-DNA through their DNA sulfur binding domain (SBD) with dissociation constants (KD) of 5 nM~1 µM. Here, we report that SprMcrA, a PDRE, failed to dissociate from PT-DNA after cleavage due to high binding affinity, resulting in low DNA cleavage efficiency. Expression of SBDs in Escherichia coli cells with PT modification induced a drastic loss of cell viability at 25°C when both DNA strands of a PT site were bound, with one SBD on each DNA strand. However, at this temperature, SBD binding to only one PT DNA strand elicited a severe growth lag rather than lethality. This cell growth inhibition phenotype was alleviated by raising the growth temperature. An in vitro assay mimicking DNA replication and RNA transcription demonstrated that the bound SBD hindered the synthesis of new DNA and RNA when using PT-DNA as the template. Our findings suggest that DNA modification-targeting proteins might regulate cellular processes involved in DNA metabolism in addition to being components of restriction-modification systems and epigenetic readers.


Asunto(s)
Replicación del ADN , Proteínas de Escherichia coli , Escherichia coli , Azufre , Escherichia coli/metabolismo , Escherichia coli/genética , Azufre/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , ADN Bacteriano/metabolismo , Enzimas de Restricción del ADN/metabolismo , Unión Proteica , ADN/metabolismo , Sitios de Unión
2.
Nucleic Acids Res ; 51(19): 10782-10794, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37702119

RESUMEN

Phosphorothioate (PT)-modification was discovered in prokaryotes and is involved in many biological functions such as restriction-modification systems. PT-modification can be recognized by the sulfur binding domains (SBDs) of PT-dependent restriction endonucleases, through coordination with the sulfur atom, accompanied by interactions with the DNA backbone and bases. The unique characteristics of PT recognition endow SBDs with the potential to be developed into gene-targeting tools, but previously reported SBDs display sequence-specificity for PT-DNA, which limits their applications. In this work, we identified a novel sequence-promiscuous SBDHga from Hahella ganghwensis. We solved the crystal structure of SBDHga complexed with PT-DNA substrate to 1.8 Å resolution and revealed the recognition mechanism. A shorter L4 loop of SBDHga interacts with the DNA backbone, in contrast with previously reported SBDs, which interact with DNA bases. Furthermore, we explored the feasibility of using SBDHga and a PT-oligonucleotide as targeting tools for site-directed adenosine-to-inosine (A-to-I) RNA editing. A GFP non-sense mutant RNA was repaired at about 60% by harnessing a chimeric SBD-hADAR2DD (deaminase domain of human adenosine deaminase acting on RNA), comparable with currently available RNA editing techniques. This work provides insights into understanding the mechanism of sequence-specificity for SBDs and for developing new tools for gene therapy.


Asunto(s)
Edición de ARN , Humanos , Adenosina Desaminasa/metabolismo , ADN/química , Edición Génica , ARN/metabolismo , Azufre/química
3.
Toxicol Appl Pharmacol ; 484: 116854, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346540

RESUMEN

Human adverse drug reactions (ADRs), and in vivo nonclinical adverse and nonadverse findings, were identified in 27 biotherapeutic programs and placed into organ categories to determine translation. The sensitivity of detecting human ADRs was 30.8% with a positive predictive value (PPV) of 53.3% for nonclinical adverse findings; sensitivity increased to 67.3% and PPV fell to 35.0% when including nonadverse findings. Nonclinical findings were associated with a greater likelihood of a human ADR in that organ category, especially for adverse findings [positive likelihood ratio (LR+) >10 (lower 95% confidence interval [CI] of >5)]. The specificity and negative predictive value (NPV) were very high (>85%). A lack of nonclinical findings in an organ category was associated with a lower likelihood of a human ADR in that organ category. About 40-50% of human ADRs and nonclinical adverse findings, and about 30% of nonclinical nonadverse findings, were attributed to pharmacology. Slightly more than half of the human ADRs with a translating nonclinical finding had findings in animals that could be considered very similar. Overall, 38% of nonclinical findings translated to a human ADR at the organ category level. When nonclinical findings did not translate to humans, the cause was usually higher exposures or longer dosing in animals. All programs with human ADRs attributed to immunogenicity also had nonclinical adverse or nonadverse findings related to immunogenicity. Overall, nonclinical adverse and nonadverse findings were useful in predicting human ADRs, especially at an organ category level, and the majority of human ADRs were predicted by nonclinical toxicity studies.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Humanos , Valor Predictivo de las Pruebas
4.
Toxicol Pathol ; 50(7): 871-880, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36200575

RESUMEN

Mylotarg (Gemtuzumab ozogamicin [GO]), an antibody drug conjugate comprising a CD33-directed antibody linked to calicheamicin, is approved for use in certain acute myeloid leukemia patients. Following reports of prolonged thrombocytopenia and hemorrhagic events in a subset of patients, a detailed series of in vitro and ex vivo studies was performed at the request of regulators, both to look at the effects of GO on platelet production and to determine whether treatment with GO was likely to affect platelet aggregation under a variety of conditions. Treatment with GO resulted in cellular cytotoxicity and/or decreased differentiation during human megakaryocyte development. However, GO did not impair platelet aggregation under the experimental conditions evaluated. Ultimately, the effect of GO on megakaryocyte development observed in our studies was determined to have no impact on the risk-benefit assessment in the intended patient population, as thrombocytopenia is a known side effect of GO, and monitoring of platelet counts in patients is already strongly recommended.


Asunto(s)
Megacariocitos , Trombocitopenia , Humanos , Gemtuzumab , Aminoglicósidos/toxicidad , Anticuerpos Monoclonales Humanizados , Proliferación Celular , Trombocitopenia/inducido químicamente , Trombocitopenia/tratamiento farmacológico
5.
Nucleic Acids Res ; 48(15): 8755-8766, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32621606

RESUMEN

The sulfur atom of phosphorothioated DNA (PT-DNA) is coordinated by a surface cavity in the conserved sulfur-binding domain (SBD) of type IV restriction enzymes. However, some SBDs cannot recognize the sulfur atom in some sequence contexts. To illustrate the structural determinants for sequence specificity, we resolved the structure of SBDSpr, from endonuclease SprMcrA, in complex with DNA of GPSGCC, GPSATC and GPSAAC contexts. Structural and computational analyses explained why it binds the above PT-DNAs with an affinity in a decreasing order. The structural analysis of SBDSpr-GPSGCC and SBDSco-GPSGCC, the latter only recognizes DNA of GPSGCC, revealed that a positively charged loop above the sulfur-coordination cavity electrostatically interacts with the neighboring DNA phosphate linkage. The structural analysis indicated that the DNA-protein hydrogen bonding pattern and weak non-bonded interaction played important roles in sequence specificity of SBD protein. Exchanges of the positively-charged amino acid residues with the negatively-charged residues in the loop would enable SBDSco to extend recognization for more PT-DNA sequences, implying that type IV endonucleases can be engineered to recognize PT-DNA in novel target sequences.


Asunto(s)
Enzimas de Restricción del ADN/genética , Proteínas de Unión al ADN/genética , ADN/genética , Azufre/química , Secuencia de Aminoácidos/genética , Cristalografía por Rayos X , ADN/química , Enzimas de Restricción del ADN/química , Proteínas de Unión al ADN/química , Escherichia coli/genética , Enlace de Hidrógeno , Unión Proteica/genética , Dominios Proteicos/genética , Streptomyces/enzimología
6.
Int J Toxicol ; 41(6): 442-454, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35989659

RESUMEN

Poly(ADP-ribose) polymerase inhibitors (PARPi) are approved as monotherapies in BRCA1/2-mutated (mBRCA1/2) metastatic breast and ovarian cancers, and in advanced pancreatic and metastatic castration-resistant prostate cancers. Differential safety profiles across PARPi necessitate improved mechanistic understanding of inhibitor differences, especially with expansion of PARPi indications and drug combinations. Here, we report in vitro evaluations of PARPi (-/+ PARP trapper temozolomide, TMZ) with reference to total clinical mean concentration average or maximum (tCavg, tCmax), to elucidate contributions of primary pharmacology and structural differences to clinical efficacy and safety. In biochemical assays, rucaparib and niraparib demonstrated off-target secondary pharmacology activities, and in selectivity assays, talazoparib, olaparib, and rucaparib inhibited a broader panel of PARP enzymes. In donor-derived human bone marrow mononuclear cells, only olaparib both increased early apoptosis and decreased the cell viability half inhibitory concentration (IC50) at ≤ tCavg, whereas other PARPi only did so in the presence of TMZ. In cancer cell lines with DNA damage repair mutations, all PARPi decreased cell viability in H1048 but not TK6 cells, and only talazoparib decreased cell growth in DU145 cells at ≤ tCavg concentrations. When combined with low dose TMZ, only talazoparib left-shifted the functional consequences of PARP trapping (S-phase arrest, apoptosis, S-phase double-stranded breaks) and reduced cell viability/growth in TK6 and DU145 cell lines at ≤ tCavg, whereas the other inhibitors required high-dose TMZ. Our study suggests structural differences across PARPi may contribute to differences in PARP selectivity and off-target activities, which along with distinct pharmacokinetic properties, may influence inhibitor-specific toxicities in patients.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Masculino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Temozolomida
7.
Appl Microbiol Biotechnol ; 105(7): 2901-2909, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33754168

RESUMEN

In this study, we report a chromogenic reaction between magnesium ascorbyl phosphate (MAP) and ferric chloride to generate a Brown-Red clathrate, while the Treated MAP by phosphatases forms Colorless (BRTC) product with ferric chloride. The BRTC was indicative of phosphatase activity-mediated excision of phosphorous group from MAP and utilized to screen phosphatases from bacterial cell lysates. From ten tested strains, BRTC was observed in the cell lysate of Salmonella enterica subsp. enterica serovar Cerro 87. BRTC was again employed to track phosphatase activity of the resuspensions of the ammonium sulfate graded precipitations of the cell lysate. Two phosphatases, PhoN and YcdX, were identified by LC-MS/MS analysis in the protein fraction giving most obvious BRTC phenotype and validated by examination of in vitro activity of the purified proteins. KEY POINTS: • BRTC is labelling-free, naked-eye visible, and independent of any facilities. • BRTC can directly screen phosphatases from microbial cell lysates. • Using BRTC system, two phosphatases were identified in Salmonella enterica subsp. enterica serovar Cerro 87.


Asunto(s)
Magnesio , Monoéster Fosfórico Hidrolasas , Cromatografía Liquida , Fosfatos , Salmonella , Espectrometría de Masas en Tándem
8.
Mol Ther ; 28(3): 889-900, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31981494

RESUMEN

FLT3 (FMS-like tyrosine kinase 3), expressed on the surface of acute myeloid leukemia (AML) blasts, is a promising AML target, given its role in the development and progression of leukemia, and its limited expression in tissues outside the hematopoietic system. Small molecule FLT3 kinase inhibitors have been developed, but despite having clinical efficacy, they are effective only on a subset of patients and associated with high risk of relapse. A durable therapy that can target a wider population of AML patients is needed. Here, we developed an anti-FLT3-CD3 immunoglobulin G (IgG)-based bispecific antibody (7370) with a high affinity for FLT3 and a long half-life, to target FLT3-expressing AML blasts, irrespective of FLT3 mutational status. We demonstrated that 7370 has picomolar potency against AML cell lines in vitro and in vivo. 7370 was also capable of activating T cells from AML patients, redirecting their cytotoxic activity against autologous blasts at low effector-to-target (E:T) ratio. Additionally, under our dosing regimen, 7370 was well tolerated and exhibited potent efficacy in cynomolgus monkeys by inducing complete but reversible depletion of peripheral FLT3+ dendritic cells (DCs) and bone marrow FLT3+ stem cells and progenitors. Overall, our results support further clinical development of 7370 to broadly target AML patients.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antineoplásicos Inmunológicos/farmacología , Complejo CD3/antagonistas & inhibidores , Hematopoyesis/efectos de los fármacos , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/uso terapéutico , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/uso terapéutico , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Médula Ósea/patología , Complejo CD3/química , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Inmunoglobulina G/farmacología , Inmunofenotipificación , Leucemia Mieloide Aguda , Depleción Linfocítica , Macaca fascicularis , Ratones , Modelos Moleculares , Dominios Proteicos/efectos de los fármacos , Relación Estructura-Actividad , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa 3 Similar a fms/química
9.
J Pharmacokinet Pharmacodyn ; 47(2): 163-182, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32162138

RESUMEN

Neutropenia is one of the most common dose-limiting toxocities associated with anticancer drug therapy. The ability to predict the probability and severity of neutropenia based on in vitro studies of drugs in early drug development will aid in advancing safe and efficacious compounds to human testing. Toward this end, a physiological model of granulopoiesis and its regulation is presented that includes the bone marrow progenitor cell cycle, allowing for a mechanistic representation of the action of relevant anticancer drugs based on in vitro studies. Model development used data from previously reported tracer kinetic studies of granulocyte disposition in healthy humans to characterize the dynamics of neutrophil margination in the presence of endogenous granulocyte-colony stimulating factor (G-CSF). In addition, previously published data from healthy volunteers following pegfilgrastim and filgrastim were used to quantify the regulatory effects of support G-CSF therapies on granulopoiesis. The model was evaluated for the cell cycle inhibitor palbociclib, using an in vitro system of human bone marrow mononuclear cells to quantify the action of palbociclib on proliferating progenitor cells, including its inhibitory effect on G1 to S phase transition. The in vitro results were incorporated into the physiological model of granulopoiesis and used to predict the time course of absolute neutrophil count (ANC) and the incidence of neutropenia observed in three previously reported clinical trials of palbociclib. The model was able to predict grade 3 and 4 neutropenia due to palbociclib treatment with 86% accuracy based on in vitro data.


Asunto(s)
Médula Ósea/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Granulocitos/efectos de los fármacos , Neutropenia/inducido químicamente , Algoritmos , Antineoplásicos/farmacología , Movimiento Celular , Filgrastim/farmacología , Factor Estimulante de Colonias de Granulocitos/farmacología , Hematopoyesis/efectos de los fármacos , Humanos , Recuento de Leucocitos , Modelos Biológicos , Neutrófilos/efectos de los fármacos , Piperazinas/farmacología , Polietilenglicoles/farmacología , Piridinas/farmacología , Células Madre/efectos de los fármacos
10.
Mol Microbiol ; 110(3): 484-497, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30184284

RESUMEN

Streptomyces species have been valuable models for understanding the phenomenon of DNA phosphorothioation in which sulfur replaces a non-bridging oxygen in the phosphate backbone of DNA. We previously reported that the restriction endonuclease ScoMcrA from Streptomyces coelicolor cleaves phosphorothioate DNA and Dcm-methylated DNA at sites 16-28 nucleotides away from the modification sites. However, cleavage of modified DNA by ScoMcrA is always incomplete and accompanied by severe promiscuous activity on unmodified DNA. These features complicate the studies of recognition and cleavage of phosphorothioate DNA. For these reasons, we here characterized SprMcrA from Streptomyces pristinaespiralis, a much smaller homolog of ScoMcrA with a rare HRH motif, a variant of the HNH motif that forms the catalytic center of these endonucleases. The sulfur-binding domain of SprMcrA and its phosphorothioation recognition site were determined. Compared to ScoMcrA, SprMcrA has higher specificity in discerning phosphorothioate DNA from unmodified DNA, and this enzyme generally cuts both strands at a distance of 11-14 nucleotides from the 5' side of the recognition site. The HRH/HNH motif has its own sequence specificity in DNA hydrolysis, leading to failure of cleavage at some phosphorothioated sites. An R248N mutation of the central residue in HRH resulted in 30-fold enhancement in cleavage activity of phosphorothioate DNA and altered the cleavage efficiency at some sites, whereas mutation of both His residues abolished restriction activity. This is the first report of a recognition domain for phosphorothioate DNA and phosphorothioate-dependent and sequence-specific restriction activity.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , ADN Bacteriano/metabolismo , Streptomyces/enzimología , Azufre/metabolismo , Sitios de Unión , Unión Proteica
11.
Proc Natl Acad Sci U S A ; 112(11): 3493-8, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733882

RESUMEN

Oncogenic c-ros oncogene1 (ROS1) fusion kinases have been identified in a variety of human cancers and are attractive targets for cancer therapy. The MET/ALK/ROS1 inhibitor crizotinib (Xalkori, PF-02341066) has demonstrated promising clinical activity in ROS1 fusion-positive non-small cell lung cancer. However, emerging clinical evidence has shown that patients can develop resistance by acquiring secondary point mutations in ROS1 kinase. In this study we characterized the ROS1 activity of PF-06463922, a novel, orally available, CNS-penetrant, ATP-competitive small-molecule inhibitor of ALK/ROS1. In vitro, PF-06463922 exhibited subnanomolar cellular potency against oncogenic ROS1 fusions and inhibited the crizotinib-refractory ROS1(G2032R) mutation and the ROS1(G2026M) gatekeeper mutation. Compared with crizotinib and the second-generation ALK/ROS1 inhibitors ceritinib and alectinib, PF-06463922 showed significantly improved inhibitory activity against ROS1 kinase. A crystal structure of the PF-06463922-ROS1 kinase complex revealed favorable interactions contributing to the high-affinity binding. In vivo, PF-06463922 showed marked antitumor activity in tumor models expressing FIG-ROS1, CD74-ROS1, and the CD74-ROS1(G2032R) mutation. Furthermore, PF-06463922 demonstrated antitumor activity in a genetically engineered mouse model of FIG-ROS1 glioblastoma. Taken together, our results indicate that PF-06463922 has potential for treating ROS1 fusion-positive cancers, including those requiring agents with CNS-penetrating properties, as well as for overcoming crizotinib resistance driven by ROS1 mutation.


Asunto(s)
Resistencia a Antineoplásicos/genética , Lactamas Macrocíclicas/farmacología , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Pirazoles/farmacología , Piridinas/farmacología , Aminopiridinas , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Proliferación Celular/efectos de los fármacos , Crizotinib , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Glioma/patología , Humanos , Lactamas , Lactamas Macrocíclicas/química , Ratones , Modelos Moleculares , Transducción de Señal/efectos de los fármacos
12.
Toxicol Pathol ; 45(2): 321-334, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28013573

RESUMEN

Detecting and monitoring exocrine pancreatic damage during nonclinical and clinical testing is challenging because classical biomarkers amylase and lipase have limited sensitivity and specificity. Novel biomarkers for drug-induced pancreatic injury are needed to improve safety assessment and reduce late-stage attrition rates. In a series of studies, miR-216a and miR-217 were evaluated as potential biomarkers of acute exocrine pancreatic toxicity in rats. Our results revealed that miR-216a and miR-217 were almost exclusively expressed in rat pancreas and that circulating miR-216a and miR-217 were significantly increased in rats following administration of established exocrine pancreatic toxicants caerulein (CL) and 1-cyano-2-hydroxy-3-butene (CHB) as well as in rats administered a proprietary molecule known to primarily affect the exocrine pancreas. Conversely, neither microRNA was increased in rats administered a proprietary molecule known to cause a lesion at the pancreatic endocrine-exocrine interface (EEI) or in rats administered an established renal toxicant. Compared with amylase and lipase, increases in miR-216a and miR-217 were of greater magnitude, persisted longer, and/or correlated better with microscopic findings within the exocrine pancreas. Our findings demonstrate that in rats, miR-216a and miR-217 are sensitive and specific biomarkers of acute exocrine pancreatic toxicity that may add value to the measurement of classical pancreatic biomarkers.


Asunto(s)
Insuficiencia Pancreática Exocrina/sangre , MicroARNs/sangre , Páncreas Exocrino/efectos de los fármacos , Enfermedad Aguda , Alquenos/toxicidad , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Ceruletida/toxicidad , Insuficiencia Pancreática Exocrina/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Nitrilos/toxicidad , Especificidad de Órganos , Páncreas Exocrino/metabolismo , Páncreas Exocrino/patología , Ratas Sprague-Dawley , Ratas Wistar , Sensibilidad y Especificidad
13.
Neural Netw ; 169: 134-142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37890363

RESUMEN

Relation extraction is one of the most essential tasks of knowledge construction, but it depends on a large amount of annotated data corpus. Few-shot relation extraction is proposed as a new paradigm, which is designed to learn new relationships between entities with merely a small number of annotated instances, effectively mitigating the cost of large-scale annotation and long-tail problems. To generalize to novel classes not included in the training set, existing approaches mainly focus on tuning pre-trained language models with relation instructions and developing class prototypes based on metric learning to extract relations. However, the learned representations are extremely sensitive to discrepancies in intra-class and inter-class relationships and hard to adaptively classify the relations due to biased class features and spurious correlations, such as similar relation classes having closer inter-class prototype representation. In this paper, we introduce an adaptive class augmented prototype network with instance-level and representation-level augmented mechanisms to strengthen the representation space. Specifically, we design the adaptive class augmentation mechanism to expand the representation of classes in instance-level augmentation, and class augmented representation learning with Bernoulli perturbation context attention to enhance the representation of class features in representation-level augmentation and explore adaptive debiased contrastive learning to train the model. Experimental results have been demonstrated on FewRel and NYT-25 under various few-shot settings, and the proposed model has improved accuracy and generalization, especially for cross-domain and different hard tasks.


Asunto(s)
Generalización Psicológica , Aprendizaje , Conocimiento , Lenguaje
14.
Front Vet Sci ; 11: 1381823, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585301

RESUMEN

Enzymolytic soybean meal (ESBM) enriches free amino acids and small peptides, while mitigating anti-nutritional factors. Substituting soybean meal with ESBM enhances animal performance, though optimal piglet dietary supplementation levels vary. The present study aimed to assess the impact of ESBM on the growth performance, nutrient digestibility, antioxidative capacity and intestinal health of weaned piglets. A total of 120 piglets (initial body weight, 7.0 ± 0.4 kg) were randomly allocated into 4 dietary groups, each comprising 5 replicates with 6 piglets per replicate. The control group received the basal diet, while the experimental groups were fed diets containing 2, 4% or 8% ESBM as a replacement for soybean meal over 28 days. Compared with the control group, piglets supplemented with 4% ESBM exhibited a significant increase (p < 0.05) in average daily gain and the apparent total tract digestibility of dry matter, ether extract and gross energy (p < 0.05), alongside a notable decrease (p < 0.05) in diarrhea incidence. Fed ESBM linearly increased (p < 0.05) the villus height in the ileum of piglets. The levels of superoxide dismutase and total antioxidant capacity in serum of piglets increased (p < 0.05) in the 2 and 4% ESBM groups, while diamine oxidase content decreased (p < 0.05) in the 4 and 8% ESBM group. ESBM inclusion also upregulated (p < 0.05) the expression of superoxide dismutase 1 (SOD-1), Catalase (CAT) and claudin-1 mRNA. In terms of cecal fermentation characteristics, ESBM supplementation resulted in a increase (p < 0.05) in valerate content and a linear rise (p < 0.05) in propionate, butyrate, and total short-chain fatty acids levels, accompanied by a decrease (p < 0.05) in the concentrations of tryptamine and NH3 in cecal digesta. ESBM had no discernible effect on cecal microbial composition. In summary, substitution of soybean meal with ESBM effectively improved the growth performance of piglets by enhancing nutrient digestibility, antioxidant capacity, intestinal barrier and cecal microbial fermentation characteristics, with the optimal replacement level identified at 4%.

15.
Biomed Pharmacother ; 174: 116428, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599056

RESUMEN

Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.


Asunto(s)
Disfunción Cognitiva , Mitocondrias , Estrés Oxidativo , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/metabolismo , Animales , Estrés Oxidativo/fisiología , Mitofagia , Demencia Vascular/fisiopatología , Demencia Vascular/metabolismo , Demencia Vascular/patología , Dinámicas Mitocondriales , Calcio/metabolismo
16.
J Clin Med ; 12(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36769713

RESUMEN

(1) Background: Extubation failure after general anesthesia is significantly associated with morbidity and mortality. The risk of a difficult airway after the general anesthesia of head, neck, and maxillofacial surgeries is significantly higher than that after general surgery, increasing the incidence of extubation failure. This study aimed to develop a multivariable prediction model based on a supervised machine-learning algorithm to predict extubation failure in adult patients after head, neck, and maxillofacial surgeries. (2) Methods: A single-center retrospective study was conducted in adult patients who underwent head, neck, and maxillofacial general anesthesia between July 2015 and July 2022 at the Shanghai Ninth People's Hospital. The primary outcome was extubation failure after general anesthesia. The dataset was divided into training (70%) and final test sets (30%). A five-fold cross-validation was conducted in the training set to reduce bias caused by the randomly divided dataset. Clinical data related to extubation failure were collected and a stepwise logistic regression was performed to screen out the key features. Six machine-learning methods were introduced for modeling, including random forest (RF), k-nearest neighbor (KNN), logistic regression (LOG), support vector machine (SVM), extreme gradient boosting (XGB), and optical gradient boosting machine (GBM). The best performance model in the first cross-validation dataset was further optimized and the final performance was assessed using the final test set. (3) Results: In total, 89,279 patients over seven years were reviewed. Extubation failure occurred in 77 patients. Next, 186 patients with a successful extubation were screened as the control group according to the surgery type for patients with extubation failure. Based on the stepwise regression, seven variables were screened for subsequent analysis. After training, SVM and LOG models showed better prediction ability. In the k-fold dataset, the area under the curve using SVM and LOG were 0.74 (95% confidence interval, 0.55-0.93) and 0.71 (95% confidence interval, 0.59-0.82), respectively, in the k-fold dataset. (4) Conclusion: Applying our machine-learning model to predict extubation failure after general anesthesia in clinical practice might help to reduce morbidity and mortality of patients with difficult airways after head, neck, and maxillofacial surgeries.

17.
Toxicol Sci ; 194(1): 53-69, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37228089

RESUMEN

The degradation tag (dTAG) system for target protein degradation can remove proteins from biological systems without the drawbacks of some genetic methods, such as slow kinetics, lack of reversibility, low specificity, and the inability to titrate dosage. These drawbacks can make it difficult to compare toxicity resulting from genetic and pharmacological interventions, especially in vivo. Because the dTAG system has not been studied extensively in vivo, we explored the use of this system to study the physiological sequalae resulting from CDK2 or CDK5 degradation in adult mice. Mice with homozygous knock-in of the dTAG sequence onto CDK2 and CDK5 were born at Mendelian ratios despite decreased CDK2 or CDK5 protein levels in comparison with wild-type mice. In bone marrow cells and duodenum organoids derived from these mice, treatment with the dTAG degrader dTAG-13 resulted in rapid and robust protein degradation but caused no appreciable change in viability or the transcriptome. Repeated delivery of dTAG-13 in vivo for toxicity studies proved challenging; we explored multiple formulations in an effort to maximize degradation while minimizing formulation-related toxicity. Degradation of CDK2 or CDK5 in all organs except the brain, where dTAG-13 likely did not cross the blood brain barrier, only caused microscopic changes in the testis of CDK2dTAG mice. These findings were corroborated with conditional CDK2 knockout in adult mice. Our results suggest that the dTAG system can provide robust protein degradation in vivo and that loss of CDK2 or CDK5 in adult mice causes no previously unknown phenotypes.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Proteínas , Masculino , Ratones , Animales , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas/metabolismo , Proteolisis
18.
BMC Genomics ; 13: 355, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22849360

RESUMEN

BACKGROUND: The androgen receptor plays a critical role throughout the progression of prostate cancer and is an important drug target for this disease. While chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-Seq) is becoming an essential tool for studying transcription and chromatin modification factors, it has rarely been employed in the context of drug discovery. RESULTS: Here we report changes in the genome-wide AR binding landscape due to dose-dependent inhibition by drug-like small molecules using ChIP-Seq. Integration of sequence analysis, transcriptome profiling, cell viability assays and xenograft tumor growth inhibition studies enabled us to establish a direct cistrome-activity relationship for two novel potent AR antagonists. By selectively occupying the strongest binding sites, AR signaling remains active even when androgen levels are low, as is characteristic of first-line androgen ablation therapy. Coupled cistrome and transcriptome profiling upon small molecule antagonism led to the identification of a core set of AR direct effector genes that are most likely to mediate the activities of targeted agents: unbiased pathway mapping revealed that AR is a key modulator of steroid metabolism by forming a tightly controlled feedback loop with other nuclear receptor family members and this oncogenic effect can be relieved by antagonist treatment. Furthermore, we found that AR also has an extensive role in negative gene regulation, with estrogen (related) receptor likely mediating its function as a transcriptional repressor. CONCLUSIONS: Our study provides a global and dynamic view of AR's regulatory program upon antagonism, which may serve as a molecular basis for deciphering and developing AR therapeutics.


Asunto(s)
Antagonistas de Receptores Androgénicos/metabolismo , Receptores Androgénicos/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Antagonistas de Receptores Androgénicos/uso terapéutico , Antagonistas de Receptores Androgénicos/toxicidad , Animales , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Ratones , Ratones SCID , Neoplasias de la Próstata/tratamiento farmacológico , Unión Proteica , Receptores Androgénicos/química , Receptores Androgénicos/genética , Análisis de Secuencia de ADN , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Bibliotecas de Moléculas Pequeñas/toxicidad , Trasplante Heterólogo
19.
J Appl Toxicol ; 32(12): 1008-20, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22936366

RESUMEN

PF-04254644 is a selective kinase inhibitor of mesenchymal epithelial transition factor/hepatocyte growth factor receptor with known off-target inhibitory activity against the phosphodiesterase (PDE) family. Rats given repeated oral doses of PF-04254644 developed a mild to moderate myocardial degeneration accompanied by sustained increase in heart rate and contractility. Investigative studies were conducted to delineate the mechanisms of toxicity. Microarray analysis of Sprague-Dawley rat hearts in a 6 day repeat dose study with PF-04254644 or milrinone, a selective PDE3 inhibitor, revealed similar perturbation of the cyclic adenosine monophosphate (c-AMP) pathway. PDE inhibition and activation of c-AMP were further substantiated using PDE3B immunofluorescence staining and through a c-AMP response element reporter gene assay. The intracellular calcium and oxidative stress signaling pathways were more perturbed by treatment with PF-04254644 than milrinone. The rat cardiomyocytes calcium assay found a dose-dependent increase in intracellular calcium with PF-04254644 treatment. These data suggest that cardiotoxicity of PF-04254644 was probably due to activation of c-AMP signaling, and possibly subsequent disruption of intracellular calcium and oxidative stress signaling pathways. The greater response with PF-04254644 as compared with milrinone in gene expression and micro- and ultrastructural changes is probably due to the broader panel of PDEs inhibition.


Asunto(s)
Miocardio/enzimología , Miocardio/ultraestructura , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Fosfodiesterasa/efectos adversos , Inhibidores de Proteínas Quinasas/efectos adversos , Quinolinas/efectos adversos , Animales , Calcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Genes Reporteros , Masculino , Milrinona/farmacología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
20.
Artículo en Inglés | MEDLINE | ID: mdl-35568638

RESUMEN

OBJECTIVE: This clinical trial was performed to evaluate the effect of nasal tube stabilization (NTS) on the pressure between tube and nose (PTN) in both supine and neck extension positions. STUDY DESIGN: This prospective randomized controlled trial recruited 24 American Society of Anesthesiologists physical status I or II adult patients who underwent oral and maxillofacial surgeries requiring nasotracheal intubation. Patients were randomly assigned to intubate with either wire-reinforced or RAE (Ring-Adair-Elwyn) tube. A thin-film pressure sensor was used to measure PTN before and after NTS in both supine and neck extension positions. Statistical analysis was performed with the GraphPad Prism 9.0 software package. RESULTS: The PTN of wire-reinforced tubes was 51 mmHg higher than that of RAE tubes in supine position before NTS (P = .005). In the wire-reinforced tube group before NTS, neck extension position increased the PTN compared with supine position (P = .0005). After NTS, the PTN in supine and neck extension positions was comparable (P = .1514). NTS significantly reduced PTN in both supine (P = .0005) and extension positions (P = .0005). In the RAE tube group, the PTN in supine and neck extension positions was comparable, either before (P = .3394) or after NTS (P = .7910). NTS also significantly reduced PTN in both supine (P = .0005) and extension positions (P = .0005). CONCLUSIONS: NTS effectively reduced the PTN of both wire-reinforced and RAE tubes, regardless of the supine or neck extension position. RAE tubes also significantly reduced the PTN compared with wire-reinforced tubes.


Asunto(s)
Intubación Intratraqueal , Nariz , Adulto , Humanos , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA