Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Plant Cell ; 35(12): 4383-4404, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37738159

RESUMEN

The elimination of seed shattering was a key step in rice (Oryza sativa) domestication. In this paper, we show that increasing the gibberellic acid (GA) content or response in the abscission region enhanced seed shattering in rice. We demonstrate that SLENDER RICE1 (SLR1), the key repressor of GA signaling, could physically interact with the rice seed shattering-related transcription factors quantitative trait locus of seed shattering on chromosome 1 (qSH1), O. sativa HOMEOBOX 15 (OSH15), and SUPERNUMERARY BRACT (SNB). Importantly, these physical interactions interfered with the direct binding of these three regulators to the lignin biosynthesis gene 4-COUMARATE: COENZYME A LIGASE 3 (4CL3), thereby derepressing its expression. Derepression of 4CL3 led to increased lignin deposition in the abscission region, causing reduced rice seed shattering. Importantly, we also show that modulating GA content could alter the degree of seed shattering to increase harvest efficiency. Our results reveal that the "Green Revolution" phytohormone GA is important for regulating rice seed shattering, and we provide an applicable breeding strategy for high-efficiency rice harvesting.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Lignina/metabolismo , Giberelinas/metabolismo , Semillas/genética , Semillas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Dis ; 108(2): 502-512, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37647089

RESUMEN

Mulberry fruit sclerotiniose is a prevalent disease caused by the fungal species Ciboria shiraiana, C. carunculoides, and Scleromitrula shiraiana of the order Helotiales, and severely affects the production of mulberry. However, these species have only been identified using morphological and rDNA-ITS sequence analyses, and their genetic variation is unclear. To address this, morphological and two-locus (ITS and RPB2) phylogenetic analyses were conducted using culture-dependent and independent methods for 49 samples from 31 orchards across four provinces in China. Illumina MiSeq sequencing was used to assess the fungal communities obtained from fruits varying in disease severity and color from an orchard in Wuhan. Conidial suspensions of C. shiraiana and C. carunculoides isolated from diseased fruits, diseased fruits affected with hypertrophy and pellet sorosis sclerotiniose, and mycelia of Sclerotinia sclerotiorum were determined to be pathogenic to the mulberry cultivar YSD10. However, fruits inoculated with S. sclerotiorum mycelia exhibited nontypical disease symptoms, and mycelia and conidia obtained from C. carunculoides and S. shiraiana strains were not pathogenic. Maximum parsimony and Bayesian analyses using the sequences of the assessed loci indicated species variability with no evidence of geographic specialization. Metagenomic analysis revealed that the diversity of fungal communities was reduced with disease progression. Furthermore, within a single fruit, the presence of two Ciboria spp. was detected. These results provide novel insights into Ciboria spp., revealing the secondary infections caused by conidia in diseased fruits, genetic variations of the pathogens, and the occurrence of coinfection. This improved understanding of fungal pathogens will aid in developing effective disease control strategies.


Asunto(s)
Coinfección , Morus , Micobioma , Frutas , Filogenia , Teorema de Bayes , China
3.
Plant Dis ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37622273

RESUMEN

Mulberry (Morus alba L.) has been cultivated for thousands of years in many temperate regions in East Asia and is commonly used to feed silkworms. In May 2021, 5 to 8% incidence of stem blight on 4-year-old mulberry 'Nongsang 14' was observed in several orchards in Nanzhang County, Hubei Province, China. The roots and stems showed symptoms of vascular discoloration, and the tender new shoots, surrounded by white hyphae, were detached easily. Symptomatic stem tissues (5 mm × 5 mm) were excised from the border between diseased and healthy tissues, surface sterilized in a 75% ethanol solution for 30 s and 2.5% sodium hypochlorite for 1.5 min, washed three times in sterile distilled water, then placed on potato dextrose agar (PDA, 250 g potatoes, 2% dextrose, 1.6% agar), and incubated at 25°C in darkness. Two isolates (Bq2 and Bq3) were subcultured using the single-spore method. On PDA, colonies were cottony, with whitish aerial mycelium and the daily growth rate was 4.25 to 5.50 mm/day at 25°C in darkness. On carnation leaf agar, macroconidia were fusiform with slightly curved apical cells and foot-shaped basal cells, three to five septate, measuring 47.5 to 80.3 × 3.6 to 5.6 µm (average 68.7 × 4.7 µm, n = 30). On spezieller nährstoffarmer agar, microconidia were produced in false heads on monophialides, mostly 0-septate, oval, obovoid, or reniform in shape, measuring 5.1 to 10.7 × 2.7 to 5.3 µm (average 8.5 × 3.3 µm, n = 30). Chlamydospores were 4.9 to 11.0 µm in diameter (average 6.8 µm, n = 30), round shaped, thick-walled, and produced individually or in pairs or in chains. For molecular identification, the ribosomal internal transcribed spacers (ITS), translation elongation factor 1α (EF-1α), 28S large subunit nrDNA (LSU), and calmodulin (CAM) genes were amplified and sequenced with primers ITS1/ITS4 (White et al. 1990), EF1H/EF2T (O'Donnell et al. 1998), LR0R/LR5 ( Vilgalys and Hester 1990; Vilgalys and Sun 1994), and CL1/CL2A (Geiser et al. 2021; Wang et al. 2011), respectively. The sequences were deposited in GenBank (OQ711943-OQ711944 for ITS, OQ722438- Q722439 for EF-1α, OQ722441-OQ722442 for CAM, and OR116152-OR116153 for LSU). A maximum-likelihood phylogenetic analysis based on multilocus sequences was conducted using MEGA7, which showed that the two isolates grouped into a clade with Neocosmospora mori (previously Fusarium solani species complex) supported by a high bootstrap value (85%), and hence, they were identified as N. mori based on morphological and molecular analyses (Brooks et al. 2022; Crous et al. 2021; Lombard et al. 2015; Zeng and Zhuang 2023). To complete Koch's postulates, three healthy 2-month-old seedlings grown in sterile peat mix were removed from pots and the roots were washed in sterile water. Each plant was inoculated by dipping wounded and unwounded roots in a spore suspension (1 × 107 conidia/ml) for 20 min, and then 10 mL of the spore suspension was poured over the roots of each seedling after transplanting. Three plants were treated with sterilized water as a control. The tested plants were then kept in a plastic box containing sterile water and incubated at 25°C in a 12 h/12 h light/dark cycle. The pathogenicity assay was repeated three times for each isolate. Root and stem blight was observed 10 days after inoculation, while the control plants were asymptomatic. Furthermore, fungi with morphological characteristics of N. mori were only reisolated from the symptomatic stems and sequences of LSU matched those of isolates Bq2 and Bq3. This pathogen has been reported previously causing stem blight on mulberry trees in Japan and South Korea (Sandoval-Denis et al. 2019), but to our knowledge, this is the first report of N. mori causing root rot and stem blight of mulberry in China. This report will facilitate the development of effective control strategies for the disease.

4.
Plant Cell Physiol ; 63(5): 671-682, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35247053

RESUMEN

Identifying the early predictive biomarkers or compounds represents a pivotal task for guiding a targeted agricultural practice. Despite the various available tools, it remains challenging to define the ideal compound combination and thereby elaborate an effective predictive model fitting that. Hence, we employed a stepwise feature selection approach followed by a maximum relevance and minimum redundancy (MRMR) on the untargeted metabolism in four mulberry genotypes at different fruit developmental stages (FDSs). Thus, we revealed that 7 out of 226 differentially abundant metabolites (DAMs) explained up to 80% variance of anthocyanin based on linear regression model and stepwise feature selection approach accompanied by an MRMR across the genotypes over the FDSs. Among them, the phosphoenolpyruvate, d-mannose and shikimate show the top 3 attribution indexes to the accumulation of anthocyanin in the fruits of these genotypes across the four FDSs. The obtained results were further validated by assessing the regulatory genes expression levels and the targeted metabolism approach. Taken together, our findings provide valuable evidences on the fact that the anthocyanin biosynthesis is somehow involved in the coordination between the carbon metabolism and secondary metabolic pathway. Our report highlights as well the importance of using the feature selection approach for the predictive biomarker identification issued from the untargeted metabolomics data.


Asunto(s)
Antocianinas , Morus , Biomarcadores/metabolismo , Frutas/genética , Frutas/metabolismo , Metabolómica/métodos , Morus/genética , Morus/metabolismo
5.
Plant Dis ; 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787006

RESUMEN

Mulberry (Morus alba L.) has been grown worldwide as a crop for silkworm rearing for over five thousand years (Jiao et al. 2020). In July 2021, a leaf spot disease was observed on mulberry leaves in Wuhan city (114°33'E, 30°48'N), Hubei province, China, with approximately 40% of leaves (about 300 trees) affected. Early symptoms were light brown, with small lesions subsequently expanding to larger sometimes irregular dark brown or black spots surrounded by yellow-brown margins, with easily perforated necrotic lesions. Leaf tissues (5 mm×5 mm) were excised from the border between diseased and healthy tissues, surface sterilized with 75% ethanol solution for 30 s and 2.5% sodium hypochlorite for 2 min, washed thrice in sterile distilled water, and then placed on potato dextrose agar (PDA), and incubated at 25°C in darkness. Four isolates (C1, C9, CHS2, and CHS6) were subcultured using the single-spore method. On PDA, colonies were cottony, pale white from above, and white to grayish-green on the reverse side. Conidia were aseptate, hyaline, subcylindrical with broadly rounded ends, 8.4 to 18.3×4.1 to 7.7 µm (mean = 13.9×5.5 µm, n = 30). Appressoria were typically elliptic or irregular with a few lobes, dark brown, 5.9 to 9.6×4.2 to 8.1 µm (mean = 7.9 ×5.7 µm, n = 30). The morphological characteristics of the isolates matched the descriptions of Colletotrichum gloeosporioides species complex (Weir et al. 2012). The isolates were further identified by analysis of the ribosomal internal transcribed spacers (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), calmodulin (CAL), actin (ACT), chitin synthase (CHS-1), glutamine synthetase (GS), and ß-tubulin 2 (TUB2) genes, amplified respectively with ITS1/ITS4, GDF/GDR, CL1C/CL2C, ACT-512F/ACT-783R, CHS-79F/CHS-345R, GSF1/GSR, and Bt2a/Bt2b (Glass and Donaldson 1995; Weir et al. 2012; White et al. 1990). The sequences were deposited in GenBank (ON492187-ON492214). Concatenated sequences of the seven genes in addition to Colletotrichum species sequences from GenBank were used to conduct a phylogenetic analysis using Maximum-Likelihood (ML) method in MEGA7. The four isolates were grouped into a clade with Colletotrichum aenigma supported by a high bootstrap value (89%), and hence, they were identified as C. aenigma based on the morphological and molecular analyses. To confirm Koch's postulates, wounded leaves of six healthy 2-month-old seedlings made by a sterile needle were inoculated with each isolate by spraying 10 ml of conidial suspensions (105 conidia/ml) on each plant, and the control plants were treated with sterile distilled water. All the treated plants were kept in a plastic box containing sterile water and incubated at 28°C in a 12 h/12 h light/dark cycle. The test was performed three times. After 7 days, typical anthracnose lesions appeared on all inoculated leaves, whereas control plants remained asymptotic. Furthermore, C. aenigma was only reisolated from the symptomatic leaves. Previous studies reported five Colletotrichum species (C. morifolium, C. fioriniae, C. brevisporum, C. karstii, and C. kahawae subsp. ciggaro) to cause this disease on mulberry in China (Tian, 1981; Xue et al. 2019). To our knowledge, this is the first report of C. aenigma causing anthracnose on mulberry in China. The finding will facilitate epidemiological studies and the development of effective control strategies for the disease.

6.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955752

RESUMEN

Photosynthesis is one of the most important factors in mulberry growth and production. To study the photosynthetic regulatory network of mulberry we sequenced the transcriptomes of two high-yielding (E1 and E2) and one low-yielding (H32) mulberry genotypes at two-time points (10:00 and 12:00). Re-annotation of the mulberry genome based on the transcriptome sequencing data identified 22,664 high-quality protein-coding genes with a BUSCO-assessed completeness of 93.4%. A total of 6587 differentially expressed genes (DEGs) were obtained in the transcriptome analysis. Functional annotation and enrichment revealed 142 out of 6587 genes involved in the photosynthetic pathway and chloroplast development. Moreover, 3 out of 142 genes were further examined using the VIGS technique; the leaves of MaCLA1- and MaTHIC-silenced plants were markedly yellowed or even white, and the leaves of MaPKP2-silenced plants showed a wrinkled appearance. The expression levels of the ensiled plants were reduced, and the levels of chlorophyll b and total chlorophyll were lower than those of the control plants. Co-expression analysis showed that MaCLA1 was co-expressed with CHUP1 and YSL3; MaTHIC was co-expressed with MaHSP70, MaFLN1, and MaEMB2794; MaPKP2 was mainly co-expressed with GH9B7, GH3.1, and EDA9. Protein interaction network prediction revealed that MaCLA1 was associated with RPE, TRA2, GPS1, and DXR proteins; MaTHIC was associated with TH1, PUR5, BIO2, and THI1; MaPKP2 was associated with ENOC, LOS2, and PGI1. This study offers a useful resource for further investigation of the molecular mechanisms involved in mulberry photosynthesis and preliminary insight into the regulatory network of photosynthesis.


Asunto(s)
Morus , Cloroplastos/genética , Cloroplastos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Morus/metabolismo , Fotosíntesis/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , RNA-Seq , Transcriptoma
7.
New Phytol ; 229(5): 2676-2692, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33135782

RESUMEN

Auxin regulates almost every aspect of plant growth and development and is perceived by the TIR1/AFB auxin co-receptor proteins differentially acting in concert with specific Aux/IAA transcriptional repressors. Little is known about the diverse functions of TIR1/AFB family members in species other than Arabidopsis. We created targeted OsTIR1 and OsAFB2-5 mutations in rice using CRISPR/Cas9 genome editing, and functionally characterized the roles of these five members in plant growth and development and auxinic herbicide resistance. Our results demonstrated that functions of OsTIR1/AFB family members are partially redundant in grain yield, tillering, plant height, root system and germination. Ostir1, Osafb2 and Osafb4 mutants exhibited more severe phenotypes than Osafb3 and Osafb5. The Ostir1Osafb2 double mutant displays extremely severe defects in plant development. All five OsTIR1/AFB members interacted with OsIAA1 and OsIAA11 proteins in vivo. Root elongation assay showed that each Ostir1/afb2-5 mutant was resistant to 2,4-dichlorophenoxyacetic acid (2,4-D) treatment. Notably, only the Osafb4 mutants were strongly resistant to the herbicide picloram, suggesting that OsAFB4 is a unique auxin receptor in rice. Our findings demonstrate similarities and specificities of auxin receptor TIR1/AFB proteins in rice, and could offer the opportunity to modify effective herbicide-resistant alleles in agronomically important crops.


Asunto(s)
Proteínas F-Box , Resistencia a los Herbicidas , Oryza , Proteínas de Plantas/genética , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Germinación , Ácidos Indolacéticos , Oryza/genética , Oryza/crecimiento & desarrollo
8.
Arch Microbiol ; 203(3): 1107-1121, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33165874

RESUMEN

The contribution of crops and soil microbial community structure and functional diversity in soil-borne diseases control mulberry plant production is still inadequately understood. In this work, a comparative study was undertaken on the microbial abundance, community structure, and functional diversity in the soil rhizosphere between the resistant (Kangqing 10) and the susceptible (Guisang 12) mulberry genotypes. The study deployed the use of dilution plate method, micro-ecology technology, and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques. The study aimed at developing better crop management methods for mulberry cultivation as well as preventing and controlling the occurrence and impacts of bacterial wilt on mulberry productivity. The results indicated that the soil rhizosphere microorganisms were more abundant in the normal resistant mulberry genotype than in the normal susceptible mulberry genotype. Carbon source utilization was better in the normal susceptible mulberry genotype. These properties were lower in the sickly resistant mulberry genotype than in the susceptible sickly mulberry genotype. Through the PCR-DGGE, it was shown that the bacterial and fungal community structures of the resistant genotypes were more stable than those of the susceptible genotypes. Through correlation regression analysis, it was shown that the mulberry bacterial wilt significantly contributes to the loss of soil nutrients, particularly organic matter and nitrogen, a possible cause to disrupted balance between the soil microbial community and the loss of soil organic matter. Resistant genotype plants displayed more resistance to bacterial wilt. Therefore, this study recommends the need to promote the cultivation of resistant genotype mulberry for increased yield.


Asunto(s)
Resistencia a la Enfermedad/genética , Morus/genética , Morus/microbiología , Rizosfera , Microbiología del Suelo , Bacterias/genética , Hongos/fisiología , Genotipo , Microbiota/genética , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Suelo/química
9.
Stud Hist Philos Sci ; 88: 164-171, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34198023

RESUMEN

Hempel seems to hold the following three views: (H1) Understanding is pragmatic/relativistic: Whether one understands why X happened in terms of Explanation E depends on one's beliefs and cognitive abilities; (H2) Whether a scientific explanation is good, just like whether a mathematical proof is good, is a nonpragmatic and objective issue independent of the beliefs or cognitive abilities of individuals; (H3) The goal of scientific explanation is understanding: A good scientific explanation is the one that provides understanding. Apparently, H1, H2, and H3 cannot be all true. Some philosophers think that Hempel is inconsistent, while some others claim that Hempel does not actually hold H3. I argue that Hempel does hold H3 and that he can consistently hold all of H1, H2, and H3 if he endorses what I call the "understanding argument." I also show how attributing the understanding argument to Hempel can make more sense of his D-N model and his philosophical analysis of the pragmatic aspects of scientific explanation.


Asunto(s)
Cognición , Humanos , Masculino
10.
Biochem Biophys Res Commun ; 524(3): 549-554, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32014255

RESUMEN

Cisplatin is a main chemotherapeutic drug used to treat non-small-cell lung cancer patients. However, these patients commonly face cisplatin resistance. The roles and underlying mechanisms of gemcitabine, irinotecan, pemetrexed and docetaxel used as single agents or combined with cisplatin for overcoming cisplatin-resistant non-small-cell lung cancer were explored in this study. MTT assays showed that gemcitabine alone exhibited stronger cytotoxicity on cisplatin-resistant A549 cells than irinotecan, pemetrexed and docetaxel. Meanwhile, gemcitabine combined with cisplatin showed a synergistic inhibitory effect on cisplatin-resistant cells. RNA sequencing and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analysis showed that cell cycle signaling pathways and trx-interacting protein were factors in the efficacy of the cotreatment. Flow cytometry and Western blot results showed that when cisplatin-resistant A549 cells were cotreated with gemcitabine and cisplatin, G0/G1 phase arrest occurred, and trx-interacting protein was upregulated. Silencing trx-interacting protein attenuated the response of the resistant cells to the drug combination. A trx-interacting protein agonist together with cisplatin showed an additive cytotoxic effect on the resistant cells compared with cisplatin alone. The gemcitabine and cisplatin combination, compared to gemcitabine or PBS alone, markedly suppressed the growth of cisplatin-resistant A549 tumors in vivo, accompanied by an increase in trx-interacting protein and a decrease in Ki67 expression. Therefore, we concluded that gemcitabine and cisplatin, as an FDA-approved combination, is a viable therapy for cisplatin-resistant non-small-cell lung cancer ex vivo and in vivo.


Asunto(s)
Proteínas Portadoras/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cisplatino/farmacología , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Células A549 , Animales , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Portadoras/metabolismo , Muerte Celular/efectos de los fármacos , Desoxicitidina/farmacología , Femenino , Fase G1/efectos de los fármacos , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
11.
Arch Microbiol ; 202(7): 1915-1927, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32451591

RESUMEN

The objective of this study was to investigate how straw-incorporating practices affect bacterial communities and carbon source utilization capacity under a rice-wheat rotational farming practice in central China. To clarify the effect of long-term straw incorporation in microbial abundance and carbon metabolism, a long-term field experiment was initiated in May 2005 (rice-planting season). Soil bacterial communities were revealed by high-throughput sequencing technology. After ten cycles of annual rice-wheat rotation (2005-2015), 2 M (straw incorporation) and 2 M + NPK (high straw incorporation + chemical fertilizer) treatments had significantly more bacterial phyla compared with CK (non-fertilization) and NPK (chemical fertilizer) treatments. Taxonomic analysis revealed that 2 M and NPK + 2 M treatments had a significantly greater abundance of microbial communities, especially the Gemmatimonadetes, Acidobacteria, Firmicutes, and Actinobacteria. In the NPK versus 2 M, 2 M treatment had a significantly greater abundance of Rozellomycota (P < 0.05). In the NPK + 2 M versus NPK, NPK + 2 M treatment also had significantly greater abundance of Ascomycota (P < 0.05). Principal component analysis (PCA) analysis showed that 2 M treatment was separate from other treatments. Using biolog-ECO method, the metabolic diversity and functional characteristics of microbial communities were used to indicate the ability of microorganisms to utilize carbon source. The carbon utilization ability of soil microorganisms in 2 M + NPK treatment was significantly higher than that of CK treatment (P < 0.05). The utilization ability of carboxylic acids, polymers, and other mixtures of carbon sources in 2 M treatment was higher than those of other treatments. These findings suggest that long-term straw incorporation affects the abundance and carbon utilization ability of soil microorganisms within 0-20 cm soil depths, among which, Gemmatimonadetes, Firmicutes, and Actinobacteria may play crucial roles in bacterial communities and carbon source utilization capacity.


Asunto(s)
Agricultura , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Oryza , Microbiología del Suelo , Triticum , Bacterias/clasificación , Bacterias/metabolismo , Carbono/metabolismo , China , Fertilizantes , Suelo/química
12.
J Integr Plant Biol ; 62(12): 1839-1852, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32644250

RESUMEN

The juvenile-to-adult transition in plants involves changes in vegetative growth and plant architecture; the timing of this transition has important implications for agriculture. The microRNA miR156 regulates this transition and shoot maturation in plants. In Arabidopsis thaliana, deposition of histone H3 trimethylation on lysine 27 (H3K27me3, a repressive mark) at the MIR156A/C loci is regulated by Polycomb Repressive Complex 1 (PRC1) or PRC2, depending on the developmental stage. The levels of miR156 progressively decline during shoot maturation. The amount of H3K27me3 at MIR156A/C loci affects miR156 levels; however, whether this epigenetic regulation is conserved remains unclear. Here, we found that in rice (Oryza sativa), the putative PRC1 subunit LIKE HETEROCHROMATIN PROTEIN 1 (OsLHP1), with the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module, affects developmental phase transitions. Loss of OsLHP1 function results in ectopic expression of MIR156B/C/I/E, phenocopy of miR156 overexpression, and reduced H3k27me3 levels at MIR156B/C/I/E. This indicates that OsLHP1 has functionally diverged from Arabidopsis LHP1. Genetic and transcriptome analyses of wild-type, miR156b/c-overexpression, and Oslhp1-2 mutant plants suggest that OsLHP1 acts upstream of miR156 and SPL during the juvenile-to-adult transition. Therefore, modifying the OsLHP1-miR156-SPL pathway may enable alteration of the vegetative period and plant architecture.


Asunto(s)
Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Oryza/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
13.
Plant Cell Physiol ; 59(9): 1782-1789, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29788450

RESUMEN

Callus formation in tissue culture follows the rooting pathway, and newly formed callus seems to be a group of root primordium-like cells. However, it is not clear whether there are multiple mechanisms of callus initiation in different species and in different organs. Here we show that the OsIAA11-mediated pathway is specifically and strictly required for callus initiation in the lateral root (LR) formation region of the primary root (PR) but not for callus initiation at the root tip or the stem base in rice. OsIAA11 and its Arabidopsis homolog AtIAA14 are key players in lateral rooting. However, the AtIAA14-mediated pathway is not strictly required for callus initiation in the LR formation region in Arabidopsis. LRs can be initiated through either the AtIAA14-mediated or AtWOX11-mediated pathway in the Arabidopsis PR, therefore providing optional pathways for callus initiation. In contrast, OsIAA11 is strictly required for lateral rooting in the rice PR, meaning that the OsIAA11 pathway is the only choice for callus initiation. Our study suggests that multiple pathways may converge to WOX5 activation during callus formation in different organs and different species.


Asunto(s)
Arabidopsis/fisiología , Oryza/fisiología , Raíces de Plantas/fisiología , Técnicas de Cultivo de Tejidos , Regulación de la Expresión Génica de las Plantas , Genes del Desarrollo , Ácidos Indolacéticos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Plantones
14.
Neurosciences (Riyadh) ; 23(2): 116-121, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29664452

RESUMEN

OBJECTIVE: To investigate the neuroprotective effect of Astragalus injection in a spinal cord ischemia-reperfusion (I/R) injury model. METHODS: A total of 27 Sprague Dawley rats were randomly divided into 3 groups: control group (n=3), I/R group (n=12), and Astragalus injection group (Ast group, n=12). Spinal cord ischemia was induced by occlusion of the abdominal aorta above the right renal artery for 32 min. Animals in the Ast group were administered Astragalus injection (6.42 mL/kg) at 30 min before the induction of ischemia. After reperfusion for 8, 12, 24, or 48 hours, the serum neuron-specific enolase (NSE) concentration was measured by enzyme-linked immunosorbent assay (ELISA) and the aquaporin-4 (AQP4) protein level was detected by western blotting. RESULTS: The pathological changes, as assessed by hematoxylin and eosin (HE) staining, were milder in the spinal cords of the Ast group compared to the I/R group. Enzyme-linked immunosorbent assay demonstrated that the NSE concentration of the Ast group was significantly lower than that of the I/R group (p<0.05). However, the NSE concentrations of the I/R and Ast groups were significantly higher than that of the control group (p=0.05). Additionally, the expression of AQP4 in the Ast group was lower than that of the I/R group at each time point. CONCLUSION: These findings indicate that Astragalus injection has a neuroprotective effect in spinal cord I/R injury by decreasing the AQP4 expression.


Asunto(s)
Fármacos Neuroprotectores/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Saponinas/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Triterpenos/uso terapéutico , Animales , Acuaporina 4/genética , Acuaporina 4/metabolismo , Planta del Astrágalo/química , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Sprague-Dawley , Saponinas/administración & dosificación , Saponinas/farmacología , Médula Espinal/irrigación sanguínea , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Triterpenos/administración & dosificación , Triterpenos/farmacología
15.
Plant Physiol ; 171(2): 1085-98, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208230

RESUMEN

Premature leaf senescence affects plant growth and yield in rice. NAD plays critical roles in cellular redox reactions and remains at a sufficient level in the cell to prevent cell death. Although numerous factors affecting leaf senescence have been identified, few involving NAD biosynthetic pathways have been described for plants. Here, we report the cloning and characterization of Leaf Tip Senescence 1 (LTS1) in rice (Oryza sativa), a recessive mutation in the gene encoding O. sativa nicotinate phosphoribosyltransferase (OsNaPRT1) in the NAD salvage pathway. A point mutation in OsNaPRT1 leads to dwarfism and the withered leaf tip phenotype, and the lts1 mutant displays early leaf senescence compared to the wild type. Leaf nicotinate and nicotinamide contents are elevated in lts1, while NAD levels are reduced. Leaf tissue of lts1 exhibited significant DNA fragmentation and H2O2 accumulation, along with up-regulation of genes associated with senescence. The lts1 mutant also showed reduced expression of SIR2-like genes (OsSRT1 and OsSRT2) and increased acetylation of histone H3K9. Down-regulation of OsSRTs induced histone H3K9 acetylation of senescence-related genes. These results suggest that deficiency in the NAD salvage pathway can trigger premature leaf senescence due to transcriptional activation of senescence-related genes.


Asunto(s)
Regulación hacia Abajo , Oryza/enzimología , Oryza/genética , Pentosiltransferasa/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/enzimología , Acetilación/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Histonas/metabolismo , Peróxido de Hidrógeno/metabolismo , Modelos Biológicos , Mutación , Niacina/farmacología , Niacinamida/farmacología , Oryza/anatomía & histología , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo
16.
Plant Cell ; 25(10): 3743-59, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24170127

RESUMEN

Ideal plant architecture1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The Squamosa promoter binding protein-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen promoter binding factor1 or promoter binding factor2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice teosinte branched1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate dense and erect panicle1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.


Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Activación Transcripcional , Sitios de Unión , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/metabolismo , Transcriptoma
17.
PLoS Genet ; 9(3): e1003391, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23526892

RESUMEN

Heterotrimeric G proteins are an important group of signaling molecules found in eukaryotes. They function with G-protein-coupled-receptors (GPCRs) to transduce various signals such as steroid hormones in animals. Nevertheless, their functions in plants are not well-defined. Previous studies suggested that the heterotrimeric G protein α subunit known as D1/RGA1 in rice is involved in a phytohormone gibberellin-mediated signaling pathway. Evidence also implicates D1 in the action of a second phytohormone Brassinosteroid (BR) and its pathway. However, it is unclear how D1 functions in this pathway, because so far no partner has been identified to act with D1. In this study, we report a D1 genetic interactor Taihu Dwarf1 (TUD1) that encodes a functional U-box E3 ubiquitin ligase. Genetic, phenotypic, and physiological analyses have shown that tud1 is epistatic to d1 and is less sensitive to BR treatment. Histological observations showed that the dwarf phenotype of tud1 is mainly due to decreased cell proliferation and disorganized cell files in aerial organs. Furthermore, we found that D1 directly interacts with TUD1. Taken together, these results demonstrate that D1 and TUD1 act together to mediate a BR-signaling pathway. This supports the idea that a D1-mediated BR signaling pathway occurs in rice to affect plant growth and development.


Asunto(s)
Brasinoesteroides/metabolismo , Oryza , Reguladores del Crecimiento de las Plantas , Ubiquitina-Proteína Ligasas , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
J Integr Plant Biol ; 61(8): 908-910, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31271265
20.
Biomed Pharmacother ; 173: 116408, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479176

RESUMEN

Malignant tumors constitute a significant category of diseases posing a severe threat to human survival and health, thereby representing one of the most challenging and pressing issues in the field of biomedical research. Due to their malignant nature, which is characterized by a high potential for metastasis, rapid dissemination, and frequent recurrence, the prevailing approach in clinical oncology involves a comprehensive treatment strategy that combines surgery with radiotherapy, chemotherapy, targeted drug therapies, and other interventions. Treatment resistance remains a major obstacle in the comprehensive management of tumors, serving as a primary cause for the failure of integrated tumor therapies and a critical factor contributing to patient relapse and mortality. The Minichromosome Maintenance (MCM) protein family comprises functional proteins closely associated with the development of resistance in tumor therapy.The influence of MCMs manifests through various pathways, encompassing modulation of DNA replication, cell cycle regulation, and DNA damage repair mechanisms. Consequently, this leads to an enhanced tolerance of tumor cells to chemotherapy, targeted drugs, and radiation. Consequently, this review explores the specific roles of the MCM family in various cancer treatment strategies. Its objective is to enhance our comprehension of resistance mechanisms in tumor therapy, thereby presenting novel targets for clinical research aimed at overcoming resistance in cancer treatment. This bears substantial clinical relevance.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA