Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brain ; 142(2): 312-321, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649233

RESUMEN

There is increasing appreciation for the role of the neurovascular unit in neurodegenerative diseases. We showed previously that the angiogenic and neurotrophic cytokine, vascular endothelial growth factor (VEGF), is suppressed to abnormally low levels in spinocerebellar ataxia type 1 (SCA1), and that replenishing VEGF reverses the cerebellar pathology in SCA1 mice. In that study, however, we used a recombinant VEGF, which is extremely costly to manufacture and biologically unstable as well as immunogenic. To develop a more viable therapy, here we test a synthetic VEGF peptide amphiphile that self-assembles into nanoparticles. We show that this nano-VEGF has potent neurotrophic and angiogenic properties, is well-tolerated, and leads to functional improvement in SCA1 mice even when administered at advanced stages of the disease. This approach can be generalized to other neurotrophic factors or molecules that act in a paracrine manner, offering a novel therapeutic strategy for neurodegenerative conditions.


Asunto(s)
Nanopartículas/administración & dosificación , Ataxias Espinocerebelosas/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Adulto , Animales , Femenino , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Persona de Mediana Edad , Nanopartículas/química , Técnicas de Cultivo de Órganos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/fisiopatología , Factor A de Crecimiento Endotelial Vascular/síntesis química
2.
Cerebellum ; 16(2): 340-347, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27306906

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by the expansion of a polyglutamine (Q) repeat tract in the protein ataxin-1 (ATXN1). Beginning as a cerebellar ataxic disorder, SCA1 progresses to involve the cerebral cortex, hippocampus, and brainstem. Using SCA1 knock-in mice that mirror the complexity of the human disease, we report a significant decrease in the capacity of adult neuronal progenitor cells (NPCs) to proliferate. Remarkably, a decrease in NPCs proliferation can be observed in vitro, outside the degenerative milieu of surrounding neurons or glia, demonstrating that mutant ATXN1 acting cell autonomously within progenitor cells interferes with their ability to proliferate. Our findings suggest that compromised adult neurogenesis contributes to the progressive pathology of the disease particularly in areas such as the hippocampus and cerebral cortex where stem cells provide neurotropic factors and participate in adult neurogenesis. These findings not only shed light on the biology of the disease but also have therapeutic implications in any future stem cell-based clinical trials.


Asunto(s)
Células Madre Adultas/metabolismo , Ataxina-1/metabolismo , Proliferación Celular/fisiología , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Ataxias Espinocerebelosas/metabolismo , Células Madre Adultas/patología , Animales , Ataxina-1/genética , Western Blotting , Bromodesoxiuridina , Células Cultivadas , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Inmunohistoquímica , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Células-Madre Neurales/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicho de Células Madre/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
J Neurosci ; 35(32): 11292-307, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26269637

RESUMEN

Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease. SIGNIFICANCE STATEMENT: In neurodegenerative disease, neuronal atrophy has long been assumed to be an early nonspecific event preceding neuronal loss. However, in a mouse model of spinocerebellar ataxia type 1 (SCA1), we identify a previously unappreciated compensatory role for neuronal shrinkage. Purkinje neuron firing in these mice is initially normal, but is followed by abnormal membrane depolarization resulting from a reduction in potassium channels. Subsequently, these electrophysiological effects are counteracted by cell atrophy, which by restoring normal potassium channel membrane density, re-establishes pacemaker firing. Reversing the initial membrane depolarization improved motor function and Purkinje neuron morphology in the SCA1 mice. These results suggest that Purkinje neuron remodeling in ataxia is an active compensatory response that serves to normalize intrinsic membrane excitability.


Asunto(s)
Cerebelo/patología , Potenciales de la Membrana/fisiología , Células de Purkinje/patología , Ataxias Espinocerebelosas/patología , Potenciales de Acción/fisiología , Animales , Ataxina-1 , Ataxinas , Atrofia/patología , Atrofia/fisiopatología , Cerebelo/fisiopatología , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Células de Purkinje/fisiología , Ataxias Espinocerebelosas/fisiopatología
4.
Hum Mol Genet ; 23(14): 3733-45, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24594842

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is an incurable neurodegenerative disease caused by a pathogenic glutamine repeat expansion in the protein ataxin-1 (ATXN1). One likely mechanism mediating pathogenesis is excessive transcriptional repression induced by the expanded ATXN-1. Because ATXN1 binds HDAC3, a Class I histone deacetylase (HDAC) that we have found to be required for ATXN1-induced transcriptional repression, we tested whether genetically depleting HDAC3 improves the phenotype of the SCA1 knock-in mouse (SCA1(154Q/2Q)), the most physiologically relevant model of SCA1. Given that HDAC3 null mice are embryonic lethal, we used for our analyses a combination of HDAC3 haploinsufficient and Purkinje cell (PC)-specific HDAC3 null mice. Although deleting a single allele of HDAC3 in the context of SCA1 was insufficient to improve cerebellar and cognitive deficits of the disease, a complete loss of PC HDAC3 was highly deleterious both behaviorally, with mice showing early onset ataxia, and pathologically, with progressive histologic evidence of degeneration. Inhibition of HDAC3 may yet have a role in SCA1 therapy, but our study provides cautionary evidence that this approach could produce untoward effects. Indeed, the neurotoxic consequences of HDAC3 depletion could prove relevant, wherever pharmacologic inhibition of HDAC3 is being contemplated, in disorders ranging from cancer to neurodegeneration.


Asunto(s)
Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Células de Purkinje/metabolismo , Ataxias Espinocerebelosas/patología , Animales , Ataxina-1 , Ataxinas , Peso Corporal , Línea Celular Tumoral , Cerebelo/patología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Células HEK293 , Haploinsuficiencia , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , Actividad Motora , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Células de Purkinje/patología , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética
5.
Oncogene ; 42(25): 2074-2087, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37161053

RESUMEN

Vimentin is highly expressed in metastatic cancers, and its expression correlates with poor patient prognoses. However, no causal in vivo studies linking vimentin and non-small cell lung cancer (NSCLC) progression existed until now. We use three complementary in vivo models to show that vimentin is required for the progression of NSCLC. First, we crossed LSL-KrasG12D; Tp53fl/fl mice (KPV+/+) with vimentin knockout mice (KPV-/-) to demonstrate that KPV-/- mice have attenuated tumor growth and improved survival compared with KPV+/+ mice. Next, we therapeutically treated KPV+/+ mice with withaferin A (WFA), an agent that disrupts vimentin intermediate filaments (IFs). We show that WFA suppresses tumor growth and reduces tumor burden in the lung. Finally, luciferase-expressing KPV+/+, KPV-/-, or KPVY117L cells were implanted into the flanks of athymic mice to track cancer metastasis to the lung. In KPVY117L cells, vimentin forms oligomers called unit-length filaments but cannot assemble into mature vimentin IFs. KPV-/- and KPVY117L cells fail to metastasize, suggesting that cell-autonomous metastasis requires mature vimentin IFs. Integrative metabolomic and transcriptomic analysis reveals that KPV-/- cells upregulate genes associated with ferroptosis, an iron-dependent form of regulated cell death. KPV-/- cells have reduced glutathione peroxidase 4 (GPX4) levels, resulting in the accumulation of toxic lipid peroxides and increased ferroptosis. Together, our results demonstrate that vimentin is required for rapid tumor growth, metastasis, and protection from ferroptosis in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Filamentos Intermedios/metabolismo , Vimentina/genética , Vimentina/metabolismo , Modelos Animales de Enfermedad , Ratones Noqueados
6.
Sci Rep ; 12(1): 5196, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338200

RESUMEN

Aging in mammals leads to reduction in genes encoding the 45-subunit mitochondrial electron transport chain complex I. It has been hypothesized that normal aging and age-related diseases such as Parkinson's disease are in part due to modest decrease in expression of mitochondrial complex I subunits. By contrast, diminishing expression of mitochondrial complex I genes in lower organisms increases lifespan. Furthermore, metformin, a putative complex I inhibitor, increases healthspan in mice and humans. In the present study, we investigated whether loss of one allele of Ndufs2, the catalytic subunit of mitochondrial complex I, impacts healthspan and lifespan in mice. Our results indicate that Ndufs2 hemizygous mice (Ndufs2+/-) show no overt impairment in aging-related motor function, learning, tissue histology, organismal metabolism, or sensitivity to metformin in a C57BL6/J background. Despite a significant reduction of Ndufs2 mRNA, the mice do not demonstrate a significant decrease in complex I function. However, there are detectable transcriptomic changes in individual cell types and tissues due to loss of one allele of Ndufs2. Our data indicate that a 50% decline in mRNA of the core mitochondrial complex I subunit Ndufs2 is neither beneficial nor detrimental to healthspan.


Asunto(s)
Metformina , NADH Deshidrogenasa , Animales , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Mamíferos/metabolismo , Metformina/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
FASEB J ; 24(6): 1667-81, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20086049

RESUMEN

Experience in complex environments induces numerous forms of brain plasticity, improving structure and function. It has been long debated whether brain plasticity can be induced under neuropathological conditions, such as Alzheimer's disease (AD), to an extent that would reduce neuropathology, rescue brain structure, and restore its function. Here we show that experience in a complex environment rescues a significant impairment of hippocampal neurogenesis in transgenic mice harboring familial AD-linked mutant APPswe/PS1DeltaE9. Proliferation of hippocampal cells is enhanced significantly after enrichment, and these proliferating cells mature to become new neurons and glia. Enhanced neurogenesis was accompanied by a significant reduction in levels of hyperphosphorylated tau and oligomeric Abeta, the precursors of AD hallmarks, in the hippocampus and cortex of enriched mice. Interestingly, enhanced expression of the neuronal anterograde motor kinesin-1 was observed, suggesting enhanced axonal transport in hippocampal and cortical neurons after enrichment. Examination of synaptic physiology revealed that environmental experience significantly enhanced hippocampal long-term potentiation, without notable alterations in basal synaptic transmission. This study suggests that environmental modulation can rescue the impaired phenotype of the Alzheimer's brain and that induction of brain plasticity may represent therapeutic and preventive avenues in AD.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/fisiología , Neurogénesis , Plasticidad Neuronal , Neuronas/metabolismo , Presenilina-1/fisiología , Enfermedad de Alzheimer/patología , Animales , Western Blotting , Encéfalo/citología , Encéfalo/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Electrofisiología , Hipocampo/citología , Hipocampo/metabolismo , Técnicas para Inmunoenzimas , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Transgénicos , Neuronas/citología , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas tau/metabolismo
8.
J Neurosci Res ; 88(10): 2103-17, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20209626

RESUMEN

Formation of new neurons in the adult brain takes place in the subventricular zone and in the subgranule layer of the dentate gyrus throughout life. Neurogenesis is thought to play a role in hippocampus- and olfaction-dependent learning and memory. However, whether impairments in neurogenesis take place in learning and memory disorders, such as Alzheimer's disease, is yet to be established. Importantly, it remains to be elucidated whether neurogenic impairments play a role in the course of the disease or are the result of extensive neuropathology. We now report that transgenic mice harboring familial Alzheimer's disease-linked mutant APPswe/PS1DeltaE9 exhibit severe impairments in neurogenesis that are evident as early as 2 months of age. These mice exhibit a significant reduction in the proliferation of neural progenitor cells and their neuronal differentiation. Interestingly, levels of hyperphosphorylated tau, the cytotoxic precursor of the Alzheimer's disease hallmark neurofibrillary tangles, are particularly high in the neurogenic niches. Isolation of neural progenitor cells in culture reveals that APPswe/PS1DeltaE9-expressing neurospheres exhibit impaired proliferation and tau hyperphosphorylation compared with wildtype neurospheres isolated from nontransgenic littermates. This study suggests that impaired neurogenesis is an early critical event in the course of Alzheimer's disease that may underlie memory impairments, at least in part, and exacerbate neuronal vulnerability in the hippocampal formation and olfaction circuits. Furthermore, impaired neurogenesis is the result of both intrinsic pathology in neural progenitor cells and extrinsic neuropathology in the neurogenic niches. Finally, hyperphosphorylation of the microtubule-associated protein tau, a critical player in cell proliferation, neuronal maturation, and axonal transport, is a major contributor to impaired neurogenesis in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiopatología , Neurogénesis/fisiología , Células Madre Adultas/fisiología , Precursor de Proteína beta-Amiloide/genética , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN , Humanos , Masculino , Ratones , Ratones Transgénicos , Mutación , Neuronas/fisiología , Fosforilación , Proteínas del Grupo Polycomb , Presenilina-1/genética , Nexinas de Proteasas , Receptores de Superficie Celular/genética , Nicho de Células Madre/fisiopatología , Factores de Tiempo , Factores de Transcripción/metabolismo , Proteínas tau/metabolismo
9.
J Neurosci Res ; 88(5): 1026-40, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19859965

RESUMEN

Epidemiological and clinical trial findings suggest that consumption of docosahexaenoic acid (DHA) lowers the risk of Alzheimer's disease (AD). We examined the effects of short-term (3 months) DHA enriched diet on plaque deposition and synaptic defects in forebrain of young APPswe/PS1 Delta E9 transgenic (tg) and non-transgenic (ntg) mice. Gas chromatography revealed a significant increase in DHA concomitant with a decrease of arachidonic acid in both brain and liver in mice fed with DHA. Female tg mice consumed relatively more food daily than ntg female mice, independent of diet. Plaque load was significantly reduced in the cortex, ventral hippocampus and striatum of female APPswe/PS1 Delta E9 tg mice on DHA diet compared to female tg mice on control diet. Immunoblot quantitation of the APOE receptor, LR11, which is involved in APP trafficking and A beta production, were unchanged in mice on DHA or control diets. Moreover drebrin levels were significantly increased in the hippocampus of tg mice on the DHA diet. Finally, in vitro DHA treatment prevented amyloid toxicity in cell cultures. Our findings support the concept that increased DHA consumption may play and important role in reducing brain insults in female AD patients.


Asunto(s)
Enfermedad de Alzheimer/dietoterapia , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Animales , Apolipoproteínas E/metabolismo , Ácido Araquidónico/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Química Encefálica/fisiología , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Femenino , Humanos , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Transgénicos , Neuropéptidos/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Presenilina-1/genética , Prosencéfalo/metabolismo , Prosencéfalo/patología , Prosencéfalo/fisiopatología , Receptores de LDL/metabolismo , Caracteres Sexuales , Resultado del Tratamiento
11.
PLoS One ; 8(5): e64460, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23700479

RESUMEN

Experience of mice in a complex environment enhances neurogenesis and synaptic plasticity in the hippocampus of wild type and transgenic mice harboring familial Alzheimer's disease (FAD)-linked APPswe/PS1ΔE9. In FAD mice, this experience also reduces levels of tau hyperphosphorylation and oligomeric ß-amyloid. Although environmental enrichment has significant effects on brain plasticity and neuropathology, the molecular mechanisms underlying these effects are unknown. Here we show that environmental enrichment upregulates the Akt pathway, leading to the downregulation of glycogen synthase kinase 3ß (GSK3ß), in wild type but not FAD mice. Several neurotrophic signaling pathways are activated in the hippocampus of both wild type and FAD mice, including brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF), and this increase is accompanied by the upregulation of the BDNF receptor, tyrosine kinase B (TrkB). Interestingly, neurotrophin-3 (NT-3) is upregulated in the brains of wild type mice but not FAD mice, while insulin growth factor-1 (IGF-1) is upregulated exclusively in the brains of FAD mice. Upregulation of neurotrophins is accompanied by the increase of N-Methyl-D-aspartic acid (NMDA) receptors in the hippocampus following environmental enrichment. Most importantly, we observed a significant increase in levels of cAMP response element- binding (CREB) transcripts in the hippocampus of wild type and FAD mice following environmental enrichment. However, CREB phosphorylation, a critical step for the initiation of learning and memory-required gene transcription, takes place in the hippocampus of wild type but not of FAD mice. These results suggest that experience of wild type mice in a complex environmental upregulates critical signaling that play a major role in learning and memory in the hippocampus. However, in FAD mice, some of these pathways are impaired and cannot be rescued by environmental enrichment.


Asunto(s)
Enfermedad de Alzheimer/etiología , Ambiente , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/metabolismo , Hipocampo/patología , Aprendizaje , Masculino , Ratones , Ratones Transgénicos , Modelos Biológicos , Neurogénesis , Neurotrofina 3/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Transducción de Señal , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA