Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Am Chem Soc ; 146(38): 26081-26094, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39283331

RESUMEN

The heteroanionic materials (HAMs) have attracted more and more attention because they can better balance the functional properties of materials. However, their rational structural design is still a great challenge. Here, by using the antiperovskite Ba3S[GeS4] as a template and calculating the tolerance factor (t) as a reference, eight heteroanionic oxychalcogenides with balanced properties were finally synthesized by a partially group-substitution method. Among them, Ba3[CO3][MQ4] (M = Ge, Sn; Q = S, Se) are centrosymmetric (CS) crystals and realize optimization of band gaps and birefringence. For Ae3[TO3][SnOQ3] (Ae = Sr, Ba; T = Si, Ge; Q = S, Se), thanks to the novel [TO4SnQ3] polyanionic groups for the regulation to the antiperovskite structures and the contributions to the nonlinear optical (NLO) properties, they achieve the structural transition from CS to noncentrosymmetry and accomplish an excellent balance among the critical performance parameters as the potential candidates for the infrared NLO materials, including phase-matchable behavior, wide band gaps (Eg = 3.26-3.95 eV), high laser damage threshold (LDT = 3.2-4.4 × AgGaS2), suitable birefringence (Δn = 0.065-0.098@2090 nm) and sufficiently strong second-harmonic generation responses (about 0.6-0.9 × AgGaS2). Moreover, benefiting from crystallization in the polar space groups, they exhibit ferroelectricity and piezoelectricity at room temperature. As far as we know, this is the first reported fully inorganic antiperovskite ferroelectric. These demonstrate that our strategy is desirable and can provide some unique insights into the development of HAMs or antiperovskite materials with specific functions or structures.

2.
Small ; 20(3): e2306459, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37679055

RESUMEN

Nonlinear optical (NLO) crystals are indispensable for the solid-state lasers for their ability to expand wavelength spectral to the regions where the directing lasing is difficult or even impossible, yet the rational design of a high-performance NLO crystal remains a great challenge owing to the severe structural and properties' requirements. Herein, a new noncentrosymmetric (NCS) and polar gallium iodate, LiGa(IO3 )4 , with a novel 2D anionic layer, is successfully designed and synthesized by the aliovalent substitution strategy based on classic α-LiIO3 . The 2D [Ga(IO3 )4 ]∞ - layer in LiGa(IO3 )4 is built from the GaO6 octahedra and highly polarizable units IO3 . Compared with its parent compound, the partial replacement of A-site Li+ cation with main group Ga3+ cation facilitates LiGa(IO3 )4 to possess excellent NLO properties, including the large second-harmonic generation (SHG) response (14 × KH2 PO4 (KDP) @ 1064 nm), wide bandgap (4.25 eV), large birefringence (0.23 @ 1064 nm), and wide optical transparency from UV to mid-IR. These reveal that LiGa(IO3 )4 will be a promising NLO crystal.

3.
Inorg Chem ; 63(2): 1404-1413, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163854

RESUMEN

Introducing F- anions or substituting F- anions with IO3- groups has been proven to be ideal strategies for designing novel noncentrosymmetric (NCS) and polar materials, yet systematic investigation into the effect of F- anions or the substitution of IO3- for F- anions on structures and properties remains rarely explored. Herein, two new gallium iodates, NaGa(IO3)2F2 (1) and NaGa(IO3)4 (2), were successfully designed and synthesized based on NaGa(IO3)3F by introducing more F- anions and replacing F- anions with IO3 groups, respectively. Structurally, in compound 1, the adjacent [GaF3(IO3)3]3- polyanions are connected in an antiparallel manner, resulting in a complete cancellation of local polarity. While in compound 2, all IO3 groups in 2D [Ga(IO3)4]∞- layers are aligned, leading to large macroscopic polarization. Additionally, chemical substitution also results in a qualitative improvement in the functional properties of compound 2. It possesses strong SHG response (12 × KDP @1064 nm) and broad optical transparency, coupled with large birefringence (0.21 @1064 nm), showcasing its promise as a promising nonlinear optical (NLO) crystal. The effects of chemical substitution between F- anions and IO3- groups on the structures and properties are discussed in detail.

4.
Inorg Chem ; 63(5): 2844-2850, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38262613

RESUMEN

Borate materials are of significant interest due to their versatile structural configuration and competitive ultraviolet (UV) transparency range. In this study, we present a novel rare-earth borate crystal, KNa2Lu(BO3)2, synthesized for the first time through a facile spontaneous crystallization method. It adopts the centrosymmetric space group Pnma (no. 62) and yields a unique three-dimensional (3D) structural network formed by isolated [BO3] plane triangles and distorted [LuO7] polyhedra. This compound displays excellent thermal stability up to ∼990 °C, demonstrating a favorable congruent melting nature. Moreover, KNa2Lu(BO3)2 achieves a notably short UV absorption cutoff at approximately 204 nm, yielding a large band gap of 5.58 eV. Remarkably, it showcases an enlarged birefringence of 0.044 at 1064 nm, implying its potential as a birefringent material. Moreover, density functional theory calculations demonstrate that the optical characteristics are predominantly influenced by fundamental building blocks [BO3] triangles and distorted [LuO7] polyhedra. Our findings demonstrate the potential of KNa2Lu(BO3)2 in the development of a birefringent candidate and enrich the structural chemistry of rare-earth-based borates.

5.
Inorg Chem ; 63(35): 16507-16514, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39165176

RESUMEN

Rational chemical substitution is an effective way to regulate structure and enrich property. Herein, a new noncentrosymmetric borosilicate, Ba2ScBSi2O9, was successfully synthesized by substituting CaO6 units in Ba2CaB2Si4O14 with ScO6 octahedra, with comparatively strong covalency. This substitution not only effectively prevents polymerization of the B-O groups, resulting in an intriguing structural transformation from tetrahedral-coordinated borosilicate of Ba2CaB2Si4O14 to mixed-coordinated borosilicate Ba2ScBSi2O9, but also enhances its second harmonic generation response (2 × KDP), that is nearly four times higher than its parent structure while keeping a short ultraviolet (UV) cutoff edge (λcutoff < 190 nm). In addition, the polar space group of Pca21 for Ba2ScBSi2O9 achieves its ferroelectric polarization reversal capability, which makes quasi-phase-matching technology possible to counteract the nonphase-matching caused by small birefringence of silicates. This work indicates the unique role of heterovalent substitution in regulating structure and performance, providing new insights for exploring borosilicate with versatile functionality.

6.
Inorg Chem ; 63(40): 19023-19029, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39306767

RESUMEN

A new deep-ultraviolet (DUV) nonlinear optical (NLO) material K0.9Rb2.1B8PO16 (KRBPO) has been designed and synthesized by adjusting the B/P molar ratio to 8:1. The KRBPO crystals were synthesized by a flux method and crystallized in noncentrosymmetric (NCS) and polar space group Cc. This compound exhibits a double-layer structure in which the A layer is composed of [B2O5] and [BO4] units and the B layer is formed by interconnected [B3O7] and [BO3] groups, and the two layers are connected by [PO4] tetrahedron. The theoretical calculations and experiments show that the synergistic interaction of π-conjugated and non-π-conjugated units leads to relatively well-balanced NLO properties of the title compound, including moderated SHG (0.7 × KDP), short UV cutoff edge (λcutoff < 190 nm), and a large band gap of 6.16 eV. Specifically, the coplanar arrangement of B-O groups in double-layer makes the KRBPO display a large birefringence (0.075@532 nm) and enables the shortest phase-matched wavelength to reach an important laser output wavelength of 266 nm.

7.
Inorg Chem ; 63(38): 17362-17366, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39264114

RESUMEN

Nonlinear-optical (NLO) crystals capable of controlling and manipulating light to generate coherent radiation at challenging wavelengths are of significant interest. However, designing a new UV NLO crystal remains difficult due to the rigid requirements for structure and properties. Herein, we have successfully designed and synthesized a novel noncentrosymmetric (NCS) rare-earth borate UV NLO crystal, K3Y3(BO3)4, through the heterovalence substitution of YAl3(BO3)4. K3Y3(BO3)4 (KYBO) crystallizes in the NCS and polar space group of P63mc, with the structure formed by the interconnectioned BO3 triangles and YO8 polyhedra through corner-sharing and edge-sharing. The property measurements indicate that KYBO is second-harmonic-generation-active with a moderate response, ∼2 × KDP. Meanwhile, KYBO can exhibit a short UV cutoff edge (λcutoff < 190 nm), indicating its potential as a new UV or deep-UV NLO crystal.

8.
Inorg Chem ; 63(8): 3986-3991, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38359456

RESUMEN

Germanate is garnering increasing attention in the field of optoelectronics owing to its competitive optical transparency and robust stability. Herein, a novel lithium-rich rare-earth germanate, Li13YGe4O16, was fabricated for the first time using a high-temperature solution approach. This compound adopts the asymmetric space group Cmc21 (no. 36), characterized by isolated [YO6] and [GeO4] structural motifs with Li+ cations located in the channel. Notably, Li13YGe4O16 presents a short ultraviolet cutoff edge at 240 nm, indicative of an enlarged band gap of 4.96 eV and showcases a wide mid-infrared transmission region exceeding 6.0 µm. Moreover, Li13YGe4O16 features exceptional thermal stability and moderate second harmonic generation (SHG) intensity. Additionally, a theoretical analysis suggests that the distorted [YO6] octahedra. [GeO4] and [LiO4] tetrahedra play a significant role in the optical activities of Li13YGe4O16. These attributes endow Li13YGe4O16 with the potential to serve as a new mid-IR nonlinear optical (NLO) crystal and enrich the structural chemistry of germanates.

9.
Inorg Chem ; 63(11): 4807-4812, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38446174

RESUMEN

Two new congruently melting Pb-containing halogen silicates, Pb3[O10Pb20](SiO4)4X10 (X = Cl, Br), have been synthesized using a high-temperature solution method. Their crystal structures were determined by single-crystal X-ray diffraction, and both compounds crystallize in the orthorhombic space group Cmca. In both structures, the mirror-symmetric bilayer composed of Pb-O polyhedra is observed for the first time in Pb-containing silicates and belongs to α-PbO derivatives and is related to the Aurivillius phase. Thermal behavior analysis, UV-vis diffuse-reflectance spectroscopy, and IR spectroscopy were also performed. The Pb3[O10Pb20](SiO4)4Cl10 matrix was doped with Eu3+ ions as a dopant, and its potential application in fluorescence was confirmed from the resulting orange-red emission.

10.
Inorg Chem ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348092

RESUMEN

Mid-infrared (IR) nonlinear optical (NLO) materials have generated extensive research interest because of their crucial role in laser technology applications. Here, we report the synthesis of a novel cadmium germanate NLO crystal, K4Cd3Ge4O13, using spontaneous crystallization. K4Cd3Ge4O13 demonstrates a distinct three-dimensional structural framework characterized by twisted [Ge4O13] and [Cd3O10] clusters, composed of [GeO4], [CdO4], [CdO5], and [CdO6] basic building units, respectively, which represents an unprecedented structural feature. The title compound undergoes a desirable congruent melting behavior at about 727 °C. Notably, K4Cd3Ge4O13 demonstrates a short UV cutoff edge at 261 nm, coupled with a wide energy gap of 4.4 eV, and maintains an extended IR transparency window at around 6.0 µm. More importantly, it demonstrates a strong second-harmonic generation activity comparable to that of KH2PO4 (KDP) at 1064 nm. Theoretical analyses further elucidate that the remarkable optical performances of K4Cd3Ge4O13 are predominantly attributed to the cooperative effects of Ge-O and Cd-O bond-based motifs. These desired characteristics underscore the potential of K4Cd3Ge4O13 as a good candidate material for mid-IR NLO applications.

11.
Inorg Chem ; 63(31): 14550-14558, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39051734

RESUMEN

Nonlinear optical (NLO) coherent light sources are widely applied in many areas of science and technology. As the core medium, the NLO material is required to have a wide transparent range, a large NLO response, and a high laser damaged threshold (LDT). It is common knowledge that langasite (La3Ga5SiO14, LGS) crystal has an underdeveloped second-harmonic generation (SHG) coefficient and a small birefringence, which seriously restrict its application in the NLO field, despite that it has a broad transmittance spectrum and a moderate LDT. Herein, we have successfully obtained novel langasite NLO crystals LGSS (La3Ga5Si0.5Sn0.5O14) and LGGS (La3Ga5Ge0.5Sn0.5O14), with short UV absorption edges of 209 and 212 nm, respectively. Incorporating heavy ions Sn4+ into the structure, a distorted BO6 octahedron was adjusted by the radius difference between Sn4+ and Si4+/Ge4+, which caused the strong SHG responses in LGSS (∼10.77 × KDP) and LGGS (∼9.23 × KDP) and increased birefringences of 0.034 and 0.025, respectively. Besides, they also had large energy band gaps (4.95 eV for LGSS, and 4.93 eV for LGGS), which allowed high LDTs with LGSS of 1.3 GW/cm2 and LGGS of 813 MW/cm2. This work demonstrates a new strategy to enhance SHG responses and birefringence for existing NLO materials and enriches langasite family crystals.

12.
Inorg Chem ; 63(31): 14786-14793, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39054963

RESUMEN

Borates, as advanced optical materials, have garnered wide interest due to their diverse structural configurations and great potential for applications in the ultraviolet (UV) regions. Herein, we synthesized a new rare-earth borate crystal, namely, K2NaYB2O6, which is classified as one of the ABReB2O6 compounds, where A and B represent alkali metal and Re denotes rare-earth metal. K2NaYB2O6 adopts in the monoclinic space group P21/c (No. 14), showcasing a three-dimensional (3D) framework composed of a planar triangular configuration of [BO3] units and distortive [YO7] polyhedra. Notably, both dihedral angles between distinct [BO3] units reach 79.6°, which represents an unprecedented structural feature in monoclinic ABReB2O6-type crystals. Moreover, the compound has a short UV absorption edge at around 204 nm, corresponding to a wide band gap of approximately 5.67 eV. Additionally, it possesses a moderate birefringence of 0.028 at 1064 nm. Further analysis utilizing theoretical calculations suggests that the optical behaviors of K2NaYB2O6 are mainly governed by its basic structural unit [BO3] triangles and distorted [YO7] polyhedra. These findings enrich the structure chemistry of rare-earth borates and offer valuable insights for the design of optical crystals in the UV wavelength range.

13.
Angew Chem Int Ed Engl ; 63(15): e202400892, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38302689

RESUMEN

Non-centrosymmetric (NCS) and polar materials capable of exhibiting many important functional properties are indispensable for electro-optical technologies, yet their rational structural design remains a significant challenge. Here, we report a "group grafting" strategy for designing the first multi-chromophore selenophosphate, Cs3In(In4Se7)(P2Se6), that crystallizes in a NCS and polar space group of Cm. The structure features a unique basic building unit (BBU) [In(In4Se10)(P2Se6)], formed through "grafting [In4Se10] supertetrahedra on the root of [In(P2Se6)2] groups". Theoretical calculations confirm that this [In(In4Se10)(P2Se6)] BBU can achieve a "1+1>2" combination of properties from two chromophores, [In4Se10] supertetrahedron and ethane-like [P2Se6] dimer. That makes Cs3In(In4Se7)(P2Se6) exhibit excellent linear and nonlinear optical (NLO) properties, including a strong second harmonic generation (SHG) response (~6×AgGaS2), a large band gap (2.45 eV), broad infrared (IR) transmission (up to 19.5 µm), a significant birefringence (0.26 @1064 nm) as well as the congruently-melting property at ~700 °C. Therefore, Cs3In(In4Se7)(P2Se6) will be a promising NLO crystal, especially in the IR region, and this research also demonstrates that "group grafting" will be an effective strategy for constructing novel polar BBUs with multi-chromophore to design NCS structures and high-performance IR NLO materials.

14.
Angew Chem Int Ed Engl ; 63(30): e202406318, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38715104

RESUMEN

Achieving the extreme balance of the key performance requirements is the crucial to breakthrough the application bottleneck for nonlinear optical (NLO) materials. Herein, by assembly of the π-conjugated [B3O6] functional species with the aid of structure-directing property of mer-isomer [YO3F3] octahedra, a new ultraviolet (UV) NLO material, Cs2YB3O6F2 with aligned arrangement of coplanar [B3O6] groups has been synthesized. The polar material exhibits the rare coexistence of the largest second harmonic generation response of 5.6×KDP, the largest birefringence of 0.091 at 532 nm, the shortest Type I phase-matching down to 200.5 nm and deep-ultraviolet transparency among reported acentric rare-earth borates with [B3O6] groups. Remarkably, benefiting from the enhanced bonding force among functional units [B3O6], a firm three-dimensional framework is constructed, which facilitates the growth of large crystals. This can be proved by a block shape crystal with dimensional of 6×5×4 mm3, indicating that it was a promising UV NLO crystal. This work provides a powerful strategy to design UV NLO materials with good performances.

15.
J Am Chem Soc ; 145(23): 12691-12700, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37236929

RESUMEN

Deep-ultraviolet nonlinear optical (DUV NLO) crystals are indispensable for solid-state lasers to produce coherent light with wavelengths shorter than 200 nm, yet their structure design still faces great challenges because two groups of conflicting properties must be satisfied simultaneously, i.e., "large second harmonic generation (SHG) response-large band gap" and "large birefringence-weak growth anisotropy". Clearly, hitherto, no crystal can perfectly satisfy these properties, including KBe2BO3F2. Herein, we design a new mixed-coordinated borophosphate Cs3[(BOP)2(B3O7)3] (CBPO) by optimizing the matching of cation and anion groups, which unprecedentedly achieves a balance for two groups of contradictions concurrently for the first time. In the structure of CBPO, it has the coplanar and π-conjugated B3O7 groups, which can make it possess a large SHG response (3 × KDP) and large birefringence (0.075@532 nm). Then, terminal O atoms of these B3O7 groups are connected by BO4 and PO4 tetrahedra, which eliminates all dangling bonds and blue shifts the UV absorption edge to the DUV region (165 nm). More importantly, owing to the judicious selection of cations, the size of cations and void of anion groups is a perfect match, which makes CBPO possess a very stable three-dimensional anion framework and thus reduces the crystal growth anisotropy. A CBPO single crystal with a size of up to 20 × 17 × 8 mm3 has been successfully grown, through which a DUV coherent light has also been achieved in Be-free DUV NLO crystals for the first time. These indicate CBPO will be the next generation of DUV NLO crystals.

16.
Small ; 19(40): e2302819, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37271892

RESUMEN

Salt-inclusion chalcogenides (SICs) have been receiving widespread attention due to their large second harmonic generation (SHG) responses and wide bandgaps, however most of them suffer from small birefringence limiting their technical application. Herein, by introducing the π-conjugated (S2 )2- units in the ionic guest of salt-inclusion structure, the first disulfide-bond-containing SIC, [Ba4 (S2 )][ZnGa4 S10 ] has been synthesized. It exhibits the widest bandgap up to 3.39 eV among polychalcogenides and strong SHG response as large as that of AgGaS2 (AGS). Importantly, its birefringence reaches a max value of 0.053@1064 nm among AGS-like SICs, indicating it is a promising IR nonlinear optical (NLO) material. Theoretical calculations reveal that the π-conjugated (S2 )2- units and covalent GaS layers favor the enhanced birefringence and large SHG response. This work provides not only a new type of SIC for the first time, but also new lights on the design of IR NLO materials.

17.
Opt Lett ; 48(20): 5313-5315, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37831855

RESUMEN

Facing the demand of high-power laser development, a high-quality magneto-optical crystal with a high Verdet constant and a high thermal conductivity is needed. Herein, an effective Faraday rotation based on a TbYO3 single crystal with a strong magneto-optical effect, grown by the laser floating zone method, is demonstrated for the first time, to the best of our knowledge. The TbYO3 crystal has the Verdet constant which is 2.16 times (106 rad·m-1 T-1) higher than that of the TGG crystal (49 rad·m-1 T-1) at 880 nm. Additionally, the TbYO3 crystal also has a thermal conductivity of 11.8 W·m-1·K-1 and a laser-induced damage threshold of 1.59 GW·cm-2. These advantages can allow the TbYO3 crystal to be an attractive magneto-optical material.

18.
Chemistry ; 29(17): e202203597, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36524850

RESUMEN

Infrared nonlinear optical (IR NLO) materials are of great significance in the development of IR laser technology. But rationally designing high-performance IR NLO materials remains a huge challenge due to the conflict between the necessary properties required for NLO materials. Notably, oxychalcogenides with mixed-anion groups have drawn extensive interest as a family of important IR NLO candidates because they integrate the property advantages of oxides and chalcogenides by chemical substitution engineering. In this review, we provide a survey of reported oxychalcogenides and aim to present the development of NLO oxychalcogenides from the perspective of rational design of their structural chemistry. Furthermore, we focus on the relationships between partial substitution and structural symmetry as well as optical properties. These provide some helpful guidance for the further exploration and design of novel oxychalcogenide materials with excellent NLO performance in the future.

19.
Inorg Chem ; 62(36): 14518-14522, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625248

RESUMEN

Organic-inorganic hybrid materials have attracted increasing attention due to their unique superiority by combining the features of organic parts with inorganic parts. Herein, two organic-inorganic hybrid nonlinear-optical crystals, [C5H6O2N3]2[IO3]2 (I) and [C5H6O2N3][HSO4]·H2O (II), were successfully synthesized in aqueous solution by selecting 2-amino-3-nitropyridine as the cation and different anions of [IO3]- and [HSO4]-. The two compounds crystallized in the noncentrosymmetric space groups of P21 and P212121, respectively. I displays second-harmonic-generation (SHG) effects of 2.4 × KDP (KH2PO4) and a large birefringence (Δncal ∼ 0.22). Moreover, II exhibits a stronger SHG response of 5.2 × KDP, an enhanced band gap (2.81 eV), as well as a large birefringence (Δncal ∼ 0.25). This work points out a new feasible path for the rational design of high-performance organic-inorganic hybrid materials.

20.
Inorg Chem ; 62(17): 6565-6569, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37067159

RESUMEN

The synthesis conditions at high temperature and high pressure are favorable for exploring new compounds with novel structures and properties. In this work, a new polar iodate, ε-La(IO3)3, is obtained by a supercritical hydrothermal method with high temperature and high pressure (T = 400 °C and P ≈ 25 MPa). Different from the known phases, ε-La(IO3)3 crystallizes in the chiral space group P21, which features a three-dimensional framework with multiple IO3- groups stacked along different directions around the LaOx polyhedra. ε-La(IO3)3 possesses high thermal stability up to 525 °C and exhibits a wide band gap of about 4.05 eV. Attributed to its noncentrosymmetric arrangement, ε-La(IO3)3 is second-harmonic-generation (SHG)-active and the powder SHG response is measured to be 11.1 × KH2PO4 at 1064 nm in the 26-50 µm particle size range. This work has enriched the structural diversity of iodates and would further promote the materials' exploration under a supercritical hydrothermal method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA