Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 611(7935): 271-277, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36070797

RESUMEN

Conducting polymers (CPs) with high conductivity and solution processability have made great advances since the pioneering work on doped polyacetylene1-3, thus creating the new field of 'organic synthetic metals,4. Various high-performance CPs have been realized, which enable the applications of several organic electronic devices5,6. Nevertheless, most CPs exhibit hole-dominant (p-type) transport behaviour7,8, whereas the development of n-type analogues lags far behind and only a few exhibit metallic state, typically limited by low doping efficiency and ambient instability. Here we present a facilely synthesized highly conductive n-type polymer poly(benzodifurandione) (PBFDO). The reaction combines oxidative polymerization and in situ reductive n-doping, greatly increasing the doping efficiency, and a doping level of almost 0.9 charges per repeating unit can be achieved. The resultant polymer exhibits a breakthrough conductivity of more than 2,000 S cm-1 with excellent stability and an unexpected solution processability without extra side chains or surfactants. Furthermore, detailed investigations on PBFDO show coherent charge-transport properties and existence of metallic state. The benchmark performances in electrochemical transistors and thermoelectric generators are further demonstrated, thus paving the way for application of the n-type CPs in organic electronics.

2.
Cardiovasc Diabetol ; 23(1): 29, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218835

RESUMEN

BACKGROUND: The stress hyperglycemia ratio (SHR) has been demonstrated as an independent risk factor for acute kidney injury (AKI) in certain populations. However, this relationship in patients with congestive heart failure (CHF) remains unclear. Our study sought to elucidate the relationship between SHR and AKI in patients with CHF. METHODS: A total of 8268 patients with CHF were included in this study. We categorized SHR into distinct groups and evaluated its association with mortality through logistic or Cox regression analyses. Additionally, we applied the restricted cubic spline (RCS) analysis to explore the relationship between SHR as a continuous variable and the occurrence of AKI. The primary outcome of interest in this investigation was the incidence of AKI during hospitalization. RESULTS: Within this patient cohort, a total of 5,221 (63.1%) patients experienced AKI during their hospital stay. Upon adjusting for potential confounding variables, we identified a U-shaped correlation between SHR and the occurrence of AKI, with an inflection point at 0.98. When the SHR exceeded 0.98, for each standard deviation (SD) increase, the risk of AKI was augmented by 1.32-fold (odds ratio [OR]: 1.32, 95% CI: 1.22 to 1.46). Conversely, when SHR was below 0.98, each SD decrease was associated with a pronounced increase in the risk of AKI. CONCLUSION: Our study reveals a U-shaped relationship between SHR and AKI in patients with CHF. Notably, we identified an inflection point at an SHR value of 0.98, signifying a critical threshold for evaluating AKI in this population.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Cardíaca , Hiperglucemia , Humanos , Estudios Retrospectivos , Factores de Riesgo , Hiperglucemia/diagnóstico , Hiperglucemia/epidemiología , Hiperglucemia/complicaciones , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Insuficiencia Cardíaca/complicaciones
3.
BMC Med Inform Decis Mak ; 24(1): 208, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054463

RESUMEN

INTRODUCTION: Sepsis-associated acute kidney injury (SA-AKI) is strongly associated with poor prognosis. We aimed to build a machine learning (ML)-based clinical model to predict 1-year mortality in patients with SA-AKI. METHODS: Six ML algorithms were included to perform model fitting. Feature selection was based on the feature importance evaluated by the SHapley Additive exPlanations (SHAP) values. Area under the receiver operating characteristic curve (AUROC) was used to evaluate the discriminatory ability of the prediction model. Calibration curve and Brier score were employed to assess the calibrated ability. Our ML-based prediction models were validated both internally and externally. RESULTS: A total of 12,750 patients with SA-AKI and 55 features were included to build the prediction models. We identified the top 10 predictors including age, ICU stay and GCS score based on the feature importance. Among the six ML algorithms, the CatBoost showed the best prediction performance with an AUROC of 0.813 and Brier score of 0.119. In the external validation set, the predictive value remained favorable (AUROC = 0.784). CONCLUSION: In this study, we developed and validated a ML-based prediction model based on 10 commonly used clinical features which could accurately and early identify the individuals at high-risk of long-term mortality in patients with SA-AKI.


Asunto(s)
Lesión Renal Aguda , Aprendizaje Automático , Sepsis , Humanos , Lesión Renal Aguda/mortalidad , Sepsis/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Anciano , Pronóstico , Algoritmos
4.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000566

RESUMEN

Staphylococcal toxic shock syndrome (STSS) is a rare, yet potentially fatal disease caused by Staphylococcus aureus (S. aureus) enterotoxins, known as superantigens, which trigger an intense immune response. Our previous study demonstrated the protective effect of tofacitinib against murine toxin-induced shock and a beneficial effect against S. aureus sepsis. In the current study, we examined the effects of tofacitinib on T-cell response in peripheral blood using a mouse model of enterotoxin-induced shock. Our data revealed that tofacitinib suppresses the activation of both CD4+ and CD8+ T cells in peripheral blood. Furthermore, both gene and protein levels of Th1 cytokines were downregulated by tofacitinib treatment in mice with enterotoxin-induced shock. Importantly, we demonstrated that CD4+ cells, but not CD8+ cells, are pathogenic in mice with enterotoxin-induced shock. In conclusion, our findings suggest that tofacitinib treatment suppresses CD4+ T-cell activation and Th1 response, thereby aiding in protection against staphylococcal toxic shock in mice. This insight may guide the future development of novel therapies for STSS.


Asunto(s)
Linfocitos T CD4-Positivos , Activación de Linfocitos , Piperidinas , Pirimidinas , Choque Séptico , Infecciones Estafilocócicas , Células TH1 , Animales , Piperidinas/farmacología , Piperidinas/uso terapéutico , Células TH1/inmunología , Células TH1/efectos de los fármacos , Células TH1/metabolismo , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Choque Séptico/tratamiento farmacológico , Choque Séptico/inmunología , Choque Séptico/inducido químicamente , Ratones , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Activación de Linfocitos/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Enterotoxinas , Staphylococcus aureus/efectos de los fármacos , Citocinas/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones Endogámicos C57BL , Femenino , Modelos Animales de Enfermedad , Superantígenos/inmunología
5.
J Infect Dis ; 228(3): 332-342, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36808423

RESUMEN

Staphylococcus aureus (S. aureus) causes a broad range of infections. Toll-like receptor (TLR) 2 senses the S. aureus lipoproteins in S. aureus infections. Aging raises the risk of infection. Our aim was to understand how aging and TLR2 affect the clinical outcomes of S. aureus bacteremia. Four groups of mice (wild type/young, wild type/old, TLR2-/-/young, and TLR2-/-/old) were intravenously infected with S. aureus, and the infection course was followed. Both TLR2 deficiency and aging enhanced the susceptibility to disease. Increased age was the main contributing factor for increased mortality rates and changes in spleen weight, whereas other clinical parameters, such as weight loss and kidney abscess formation, were more TLR2 dependent. Importantly, aging increased mortality rates without relying on TLR2. In vitro, both aging and TLR2 deficiency down-regulated cytokine/chemokine production of immune cells with distinct patterns. In summary, we demonstrate that aging and TLR2 deficiency impair the immune response to S. aureus bacteremia in distinct ways.


Asunto(s)
Bacteriemia , Infecciones Estafilocócicas , Animales , Ratones , Receptor Toll-Like 2/genética , Staphylococcus aureus/fisiología , Citocinas
6.
Int Wound J ; 20(5): 1700-1711, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36517972

RESUMEN

Keloid is a benign fibro-proliferative dermal tumour formed by an abnormal scarring response to injury and characterised by excessive collagen accumulation and invasive growth. The pathophysiology of keloids is complex, and the treatment for keloids is still an unmet medical need. Here, we investigated the transcriptional gene that influences keloid development by comparing keloid, non-lesioned keloid skin and normal skin as well as keloid fibroblast and normal fibroblast (GSE83286, GSE92566, GSE44270). Based on the analysis, 146 up-regulated genes and 48 down-regulated genes were found in keloid tissue compared with normal skin and keloid no-lesioned skin. Eleven genes were further identified by overlapping the DEGs from keloid tissue described previously with DEGs in keloid fibroblast. The overlapped genes included PRR16, SFRP2, EDIL3, GERM1, POSTN, PDE3A, GALNT5, F2RL2, EYA4, ZFHX4, and AIM2. POSTN is the most crucial node in PPI network, which mainly correlate to collagen-related genes. Moreover, siRNA knockdown identified POSTN is a crucial regulatory gene that regulates keloid fibroblast migration and collagen I, collagen III expression level. In conclusion, our study identified 11 hub genes that play crucial role in keloid formation and provided insights for POSTN to be the therapeutic target for keloid through bioinformatic analysis of three datasets. Additionally, our results would support the development of future therapeutic strategies.


Asunto(s)
Moléculas de Adhesión Celular , Queloide , Humanos , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Colágeno/metabolismo , Biología Computacional , Queloide/patología , Transactivadores/metabolismo
7.
Theor Appl Genet ; 135(3): 803-815, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34825925

RESUMEN

KEY MESSAGE: MELO3C019554 encoding a homeobox protein (PHD transcription factor) is a candidate gene that involved in the formation of seed coat color in melon. Seed coat color is related to flavonoid content which is closely related to seed dormancy. According to the genetic analysis of a six-generation population derived from two parents (IC2508 with a yellow seed coat and IC2518 with a brown seed coat), we discovered that the yellow seed coat trait in melon is controlled by a single dominant gene, named CmBS-1. Bulked segregant analysis sequencing (BSA-Seq) revealed that the gene is located at 11,860,000-15,890,000 bp (4.03 Mb) on Chr 6. The F2 population was genotyped using insertion-deletions (InDels), from which cleaved amplified polymorphic sequence (dCAPS) markers were derived to construct a genetic map. The gene was then fine-mapped to a 233.98 kb region containing 12 genes. Based on gene sequence analysis with two parents, we found that the MELO3C019554 gene encoding a homeobox protein (PHD transcription factor) had a nonsynonymous single nucleotide polymorphism (SNP) mutation in the coding sequence (CDS), and the SNP mutation resulted in the conversion of an amino acid (A → T) at residue 534. In addition, MELO3C019554 exhibited lower relative expression levels in the yellow seed coat than in the brown seed coat. Furthermore, we found that MELO3C019554 is related to 12 flavonoid metabolites. Thus, we predicted that MELO3C019554 is a candidate gene controlling seed coat color in melon. The study lays a foundation for further cloning projects and functional analysis of this gene, as well as marker-assisted selection breeding.


Asunto(s)
Cucumis melo , Cucurbitaceae , Mapeo Cromosómico , Cucumis melo/genética , Cucurbitaceae/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Semillas/genética
8.
Macromol Rapid Commun ; 43(22): e2200190, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35510577

RESUMEN

In organic solar cells, interfacial materials play essential roles in charge extraction, transportation, and collection. Currently, highly efficient and thickness-insensitive interfacial materials are urgently needed in printable large area module devices. Herein, water/alcohol-soluble conjugated polyelectrolyte PFNBT-Br, with medium bandgap based on benzothiadiazole, are doped by two alkali metal sodium salts, NaH2 PO2 , Na2 C2 O4 with different counter anions, to pursue high efficiency and thickness-insensitive electron-transport layers. Results show that the doping of electron-transport material can effectively promote the performance of the devices. Moreover, electron-transport layers doped by these salts with different counter anions show different behaviors in performances. Among which, the salt with oxalate anion C2 O4 2- (also named Ox2- ) shows much better device performance than the salt with hypophosphite anion (H2 PO2 - ), especially under the thick film condition (e.g., 50 nm). The greatly enhanced performances of interfacial material doped by Ox2- are due to reduced series resistance between the active layer material and the electrode, reduced dark-current, improved charge transport, and extraction efficiency, and decreased charge recombination for the devices at thick-film condition. These results demonstrated that n-doping could be a great potential strategy for making thickness-insensitive interfacial layers, besides, the performances can be further improved by carefully selecting salts.

9.
BMC Plant Biol ; 21(1): 126, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658004

RESUMEN

BACKGROUND: Melon is a very important horticultural crop produced worldwide with high phenotypic diversity. Fruit size is among the most important domestication and differentiation traits in melon. The molecular mechanisms of fruit size in melon are largely unknown. RESULTS: Two high-density genetic maps were constructed by whole-genome resequencing with two F2 segregating populations (WAP and MAP) derived from two crosses (cultivated agrestis × wild agrestis and cultivated melo × cultivated agrestis). We obtained 1,871,671 and 1,976,589 high quality SNPs that show differences between parents in WAP and MAP. A total of 5138 and 5839 recombination events generated 954 bins in WAP and 1027 bins in MAP with the average size of 321.3 Kb and 301.4 Kb respectively. All bins were mapped onto 12 linkage groups in WAP and MAP. The total lengths of two linkage maps were 904.4 cM (WAP) and 874.5 cM (MAP), covering 86.6% and 87.4% of the melon genome. Two loci for fruit size were identified on chromosome 11 in WAP and chromosome 5 in MAP, respectively. An auxin response factor and a YABBY transcription factor were inferred to be the candidate genes for both loci. CONCLUSION: The high-resolution genetic maps and QTLs analyses for fruit size described here will provide a better understanding the genetic basis of domestication and differentiation, and provide a valuable tool for map-based cloning and molecular marker assisted breeding.


Asunto(s)
Cucumis melo/genética , Frutas/genética , Genes de Plantas , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cromosomas de las Plantas , Cucumis melo/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Genoma de Planta , Polimorfismo de Nucleótido Simple , Recombinación Genética , Secuenciación Completa del Genoma
10.
PLoS Pathog ; 15(6): e1007877, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31226163

RESUMEN

Rapid bone destruction often leads to permanent joint dysfunction in patients with septic arthritis, which is mainly caused by Staphylococcus aureus (S. aureus). Staphylococcal cell wall components are known to induce joint inflammation and bone destruction. Here, we show that a single intra-articular injection of S. aureus lipoproteins (Lpps) into mouse knee joints induced chronic destructive macroscopic arthritis through TLR2. Arthritis was characterized by rapid infiltration of neutrophils and monocytes. The arthritogenic effect was mediated mainly by macrophages/monocytes and partially via TNF-α but not by neutrophils. Surprisingly, a S. aureus mutant lacking Lpp diacylglyceryl transferase (lgt) caused more severe joint inflammation, which coincided with higher bacterial loads of the lgt mutant in local joints than those of its parental strain. Coinjection of pathogenic S. aureus LS-1 with staphylococcal Lpps into mouse knee joints caused improved bacterial elimination and diminished bone erosion. The protective effect of the Lpps was mediated by their lipid moiety and was fully dependent on TLR2 and neutrophils. The blocking of CXCR2 on neutrophils resulted in total abrogation of the protective effect of the Lpps. Our data demonstrate that S. aureus Lpps elicit innate immune responses, resulting in a double-edged effect. On the one hand, staphylococcal Lpps boost septic arthritis. On the other hand, Lpps act as adjuvants and activate innate immunity, which could be useful for combating infections with multiple drug-resistant strains.


Asunto(s)
Artritis/inmunología , Proteínas Bacterianas/inmunología , Lipoproteínas/inmunología , Neutrófilos/inmunología , Staphylococcus aureus/inmunología , Animales , Artritis/genética , Artritis/microbiología , Artritis/patología , Proteínas Bacterianas/genética , Femenino , Lipoproteínas/genética , Ratones , Neutrófilos/patología , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/inmunología , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
11.
Cell Commun Signal ; 19(1): 35, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33736642

RESUMEN

BACKGROUND: The mechanism underlying endothelial dysfunction leading to cardiovascular disease in type 2 diabetes mellitus (T2DM) remains unclear. Here, we show that inhibition of histone deacetylase 3 (HDAC3) reduced inflammation and oxidative stress by regulating nuclear factor-E2-related factor 2 (Nrf2), which mediates the expression of anti-inflammatory- and pro-survival-related genes in the vascular endothelium, thereby improving endothelial function. METHODS: Nrf2 knockout (Nrf2 KO) C57BL/6 background mice, diabetic db/db mice, and control db/m mice were used to investigate the relationship between HDAC3 and Nrf2 in the endothelium in vivo. Human umbilical vein endothelial cells (HUVECs) cultured under high glucose-palmitic acid (HG-PA) conditions were used to explore the role of Kelch-like ECH-associated protein 1 (Keap1) -Nrf2-NAPDH oxidase 4 (Nox4) redox signaling in the vascular endothelium in vitro. Activity assays, immunofluorescence, western blotting, qRT-PCR, and immunoprecipitation assays were used to examine the effect of HDAC3 inhibition on inflammation, reactive oxygen species (ROS) production, and endothelial impairment, as well as the activity of Nrf2-related molecules. RESULTS: HDAC3 activity, but not its expression, was increased in db/db mice. This resulted in de-endothelialization and increased oxidative stress and pro-inflammatory marker expression in cells treated with the HDAC3 inhibitor RGFP966, which activated Nrf2 signaling. HDAC3 silencing decreased ROS production, inflammation, and damage-associated tube formation in HG-PA-treated HUVECs. The underlying mechanism involved the Keap1-Nrf2-Nox4 signaling pathway. CONCLUSION: The results of this study suggest the potential of HDAC3 as a therapeutic target for the treatment of endothelial dysfunction in T2DM. Video Abstract.


Asunto(s)
Diabetes Mellitus/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones Endogámicos C57BL , NADPH Oxidasa 4/antagonistas & inhibidores , NADPH Oxidasa 4/metabolismo , Sustancias Protectoras/farmacología , Unión Proteica/efectos de los fármacos
12.
J Chem Inf Model ; 61(12): 6085-6093, 2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-34905361

RESUMEN

Selectins interact with cell-surface glycans to promote the initial tethering and rolling of leukocytes, and these interactions are targets for designs of inhibitors to neutralize diseases related to excessive inflammatory responses in many cardiovascular and immune dysfunctions, as well as tumor markers in different cancers. The isomeric endogenous tetrasaccharides, sialyl Lewis X (sLex) and sialyl Lewis A (sLea), are minimal sugar structures required for selectin binding. Understanding their subtle structural variances and significant advanced binding strengths of sLea over sLex could benefit the rational designs for selectin inhibitors. Modeling based on the E-selectin-sLex crystal structure in the present study demonstrated that the N-acetyl group of GlcNAc in sLex could form steric hindrances in the E-selectin-sLex complex, but the hydroxy methylene group of GlcNAc in sLea at the same position allows for stronger binding interactions. The subsequent designed inhibitor with a synthetic accessible linker molecule that has no exo-cyclic moieties replacing GlcNAc displayed comparable dynamic and energetic binding features to sLea. The present study deciphered the clues from endogenous isomeric sLea and sLex and provided insights into designing selectin inhibitors with simplified synthesis.


Asunto(s)
Lectinas , Oligosacáridos , Selectinas , Antígeno Sialil Lewis X , Lectinas/antagonistas & inhibidores , Ligandos , Oligosacáridos/química , Antígeno Sialil Lewis X/química
13.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281154

RESUMEN

Staphylococcal aureus (S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria-bacteria and bacteria-host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.


Asunto(s)
Vesículas Extracelulares/inmunología , Lipoproteínas/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Inflamación/inmunología , Lipoproteínas/fisiología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/patogenicidad , Receptor Toll-Like 2/metabolismo
14.
J Wound Ostomy Continence Nurs ; 48(4): 339-344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34186553

RESUMEN

PURPOSE: The purpose of this study was to investigate the relationship and to determine potential usefulness of serum albumin as a biomarker for predicting postoperative diabetic foot ulcer (DFU) healing. DESIGN: A retrospective study. SUBJECTS AND SETTING: The sample comprised 266 inpatients with type 2 diabetes receiving care in The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China. Among them, 174 had DFUs and underwent surgery for foot DFUs including amputation, skin grafting, and flap procedures. A comparison group consisted of 92 inpatients without a DFU or surgery. METHODS: The association between healing and preoperative albumin levels was analyzed via a logistic regression model and receiver operating characteristic (ROC) curve. RESULTS: The albumin value of patients with DFU grade 3 or more (3.23 ± 0.58 g/dL) was lower than that of patients with DFU grade 1-2 (3.58 ± 0.5 g/dL), and both were lower than that of the comparison group (3.89 ± 0.3 g/dL). Patients with a DFU with hypoalbuminemia (<3.5 g/dL) had a 2.5-fold higher risk of nonhealing at postoperative 28 days than patients with normal levels (odds ratio = 3.51; 95% confidence interval, 1.75-7.06; P < .001). For patients with a DFU overall, the ROC curve showed a preoperative albumin cutoff of 3.44 g/dL for DFU wound healing. CONCLUSIONS: For patients with a DFU undergoing surgery, preoperative serum albumin may be used as a biomarker for predicting postoperative healing.


Asunto(s)
Pie Diabético/terapia , Albúmina Sérica/análisis , Cicatrización de Heridas , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , China , Diabetes Mellitus Tipo 2 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Periodo Preoperatorio , Estudios Retrospectivos
15.
BMC Infect Dis ; 20(1): 185, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111171

RESUMEN

BACKGROUND: Staphylococcus aureus (S. aureus) arthritis is one of the most detrimental joint diseases known and leads to severe joint destruction within days. We hypothesized that the provision of auxiliary immunoregulation via an expanded compartment of T regulatory cells (Tregs) could dampen detrimental aspects of the host immune response whilst preserving its protective nature. Administration of low-dose interleukin 2 (IL2) preferentially expands Tregs, and is being studied as a treatment choice in several autoimmune conditions. We aimed to evaluate the role of IL2 and Tregs in septic arthritis using a well-established mouse model of haematogenously spred S. aureus arthritis. METHODS: C57BL/6 or NMRI mice we intravenously (iv) injected with a defined dose of S. aureus LS-1 or Newman and the role of IL2 and Tregs were assessed by the following approaches: IL2 was endogenously delivered by intraperitoneal injection of a recombinant adeno-associated virus vector (rAAV) before iv S. aureus inoculation; Tregs were depleted before and during S. aureus arthritis using antiCD25 antibodies; Tregs were adoptively transferred before induction of S. aureus arthritis and finally, recombinant IL2 was used as a treatment starting day 3 after S. aureus injection. Studied outcomes included survival, weight change, bacterial clearance, and joint damage. RESULTS: Expansion of Tregs induced by IL2 gene therapy prior to disease onset does not compromise host resistance to S. aureus infection, as the increased proportions of Tregs reduced the arthritis severity as well as the systemic inflammatory response, while simultaneously preserving the host's ability to clear the infection. CONCLUSIONS: Pre-treatment with IL2 gene therapy dampens detrimental immune responses but preserves appropriate host defense, which alleviates S. aureus septic arthritis in a mouse model.


Asunto(s)
Artritis Infecciosa/prevención & control , Terapia Genética , Interleucina-2/genética , Staphylococcus aureus/patogenicidad , Animales , Anticuerpos Monoclonales/uso terapéutico , Artritis Infecciosa/etiología , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/metabolismo , Interleucina-2/metabolismo , Subunidad alfa del Receptor de Interleucina-2/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/uso terapéutico , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
16.
Ecotoxicol Environ Saf ; 203: 111002, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32684519

RESUMEN

In this paper, environmental friendly magnetic composite adsorbent (MSAL), exhibited excellent adsorption capacity for lead ions in the solution, was successfully prepared using two non-biologically toxic materials including L-cysteine and sodium alginate. Batch experiments were carried out to discuss the influences of different parameters like pH, adsorbent dosing, initial concentration and contact time on adsorption performance. Results showed sorption process followed by pseudo-second-order kinetic model and Langmuir isotherm model, which suggested the adsorption was limited by the chemical process dominated by the molecular layer. Based on Langmuir isotherm model, the maximum Pb(Ⅱ) adsorption capacity was about 330 mg/g, which was better than a large amount of other lead adsorbents. Various analytical methods, such as SEM-EDS, FTIR, VSM, TGA, XPS and Zeta potential, were applied to characterize the performance of this adsorbent as well as exploring the adsorption mechanism. Characterization results found this adsorbent exhibited a large contact area, good thermal stability, sufficient adsorption sites and excellent magnetic responsiveness. It also has been found that the adsorption mechanism mainly included ion exchange and chelation between amino, carboxyl and lead ions. After 5 cycles, the adsorption capacity decreased from 98.04% to 87.40% and still maintained at high level. The average iron ions concentration in the adsorbed solution sample or in the regeneration solution were 0.34 mg/L and 0.15 mg/L. Overall, all above results imply that MSAL is a promising reusable adsorbent for removing Pb(Ⅱ) in solution.


Asunto(s)
Plomo/análisis , Nanopartículas de Magnetita/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Alginatos/química , Cisteína/química , Óxido Ferrosoférrico/química , Concentración de Iones de Hidrógeno , Cinética , Fenómenos Magnéticos , Propiedades de Superficie
17.
Angew Chem Int Ed Engl ; 59(26): 10363-10367, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32208545

RESUMEN

A photocatalytic system containing a perylene bisimide (PBI) dye as a photosensitizer anchored to titanium dioxide (TiO2 ) nanoparticles through carboxyl groups was constructed. Under solar-light irradiation in the presence of sacrificial triethanolamine (TEOA) in neutral and basic conditions (pH 8.5), a reaction cascade is initiated in which the PBI molecule first absorbs green light, giving the formation of a stable radical anion (PBI.- ), which in a second step absorbs near-infrared light, forming a stable PBI dianion (PBI2- ). Finally, the dianion absorbs red light and injects an electron into the TiO2 nanoparticle that is coated with platinum co-catalyst for hydrogen evolution. The hydrogen evolution rates (HERs) are as high as 1216 and 1022 µmol h-1 g-1 with simulated sunlight irradiation in neutral and basic conditions, respectively.

18.
J Am Chem Soc ; 140(28): 8934-8943, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29944354

RESUMEN

All-polymer solar cells (all-PSCs) composed of conjugated polymers as both donor and acceptor components in bulk heterojunction photoactive layers have attracted increasing attention. However, it is a big challenge to achieve optimal morphology in polymer:polymer blends. In response, we report herein a new strategy to adjust the nanoscale organization for all-PSCs. Specifically, side chain engineering of the well-known naphthalene diimide (NDI)-based polymer N2200 is modulated by introducing a fraction of linear oligoethylene oxide (OE) side chains to replace branched alkyl chains on the NDI units and by synthesizing a series of NDI-based polymer acceptors NOE x, where x is the percentage of OE chain substituted NDI units relative to total NDI units. Compared to the reference polymer NOE0, OE-chain-containing polymer NOE10 offers a much higher power conversion efficiency (PCE) of 8.1% with a record high fill factor (FF) of 0.75 in all-PSCs. Moreover, the NOE10-based all-PSC exhibits excellent long-term and thermal stabilities with >97% of the initial PCE being maintained after 300 h of aging at 65 °C. This work demonstrates an effective morphology optimization strategy to achieve highly efficient and stable all-PSCs and shows the excellent potential of NOE10 as an alternative to commercially available acceptor polymers N2200.

19.
Small ; 11(27): 3344-50, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25682920

RESUMEN

Organic halide salts are successfully incorporated in perovskite-based planar-heterojunction solar cells as both the processing additive and interfacial modifier to improve the morphology of the perovskite light-absorbing layer and the charge collecting property of the cathode. As a result, perovskite solar cells exhibit a significant improvement in power conversion efficiency (PCE) from 10% of the reference device to 13% of the modified devices.

20.
Pathogens ; 13(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39204252

RESUMEN

Staphylococcus aureus [S. aureus] is a leading cause of sepsis and septic arthritis, conditions that pose significant medical challenges due to their high mortality and morbidity. No studies have used an in vivo imaging system [IVIS] to monitor S. aureus sepsis and septic arthritis. Here, we employed a bioluminescent reporter strain of S. aureus, Newman AH5016, administered intravenously to induce sepsis and intra-articularly to induce local septic arthritis in mice. Disease progression was monitored using IVIS to capture bioluminescent signals from kidneys, joints, and whole mice. Cytokines in the blood and joints were measured. The efficacy of cloxacillin treatment was evaluated. In the sepsis model, bioluminescent signals from kidneys, but not from whole mice, were correlated with kidney bacterial load and abscess formation. Ex vivo kidney imaging detected increased bacterial load and abscess formation from day 3 to day 10. Antibiotic treatment significantly reduced kidney signals, correlating with decreased bacterial counts and IL-6 levels, indicating effective infection control. In the local infection model, early-phase bioluminescent signals from joints were correlated with macroscopic arthritis and bacterial burden. Thus, signal detection from kidneys using IVIS is useful for monitoring S. aureus sepsis and assessing antibiotic efficacy, though it may only be effective for early-phase monitoring of local septic arthritis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA