Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Carcinog ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751032

RESUMEN

The serine protease CORIN catalyzes pro-atrial natriuretic peptide (pro-ANP) into an active ANP and maintains homeostasis of the internal environment. However, it is unclear whether CORIN participates in the regulation of tumor progression. We analyzed the expression profile of CORIN in gastric cancer tissues (GCs) and adjacent nontumoral tissues (NTs). We investigated the prognostic value of CORIN in GC patients. We characterized the in vitro and in vivo activity of CORIN in cultured GC cells with gain-of-function and loss-of-function experiments. The underlying mechanism was explored by using bioinformatics, a signaling antibody array, and confirmative western blot analyses, as well as rescue experiments with highly selective small-molecule inhibitors targeting the ERK1/2 MAPK signaling pathway. CORIN was upregulated in GCs than in NTs. Overexpression of CORIN was correlated with unfavorable prognoses in patients with GC. Ectopic expression of CORIN was promoted, whereas silencing of CORIN suppressed proliferation, colony formation, migration and invasion of GC cells, and tumor growth in vivo. Overexpression of CORIN-induced epithelial-mesenchymal transition (EMT) and activation of the ERK1/2 MAPK signaling pathway, while silencing of CORIN yielded opposite results. The in vitro tumor-promoting potency of CORIN could be antagonized by selective inhibitors targeting the ERK1/2 MAPK pathway. In conclusion, CORIN is a potential prognostic marker and therapeutic target for GC patients, which may promote tumor progression by mediating the ERK1/2 MAPK signaling pathway and EMT in GC cells.

2.
FASEB J ; 37(3): e22790, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36786694

RESUMEN

Resistance to oxaliplatin (OXA) is a major cause of recurrence in gastric cancer (GC) patients. Autophagy is an important factor ensuring the survival of cancer cells under chemotherapeutic stress. We aimed to investigate the role of OXA-related genes in autophagy and chemoresistance of gastric cancer cells. We established OXA-resistant gastric cancer cells and used RNA-seq to profile gene expression within OXA-resistant GC and corresponding parental cells. Immunohistochemistry and RT-qPCR was performed to detect gene expression in tissues of two cohorts of GC patients who received OXA-based chemotherapy. The chemoresistant effects of the gene were assessed by cell viability, apoptosis, and autophagy assays. The effects of the gene on autophagy were assessed with mRFP-GFP-LC3 and Western blotting (WB). Gene set enrichment analysis (GSEA) and WB were performed to detect the activity of PI3K/AKT/mTOR signaling under the regulation of the gene. The OXA-resistant property of GC cells is related to their enhanced autophagic activity. Based on RNA-seq profiling, ANXA1 was selected as a candidate, as it was upregulated significantly in OXA-resistant cells. Furthermore, we found that higher ANXA1 expression before chemotherapy was associated with subsequent development of resistance to oxaliplatin, and overexpression of ANXA1 promoted the resistance of gastric cancer cells to oxaliplatin. So, it may serve as a key regulator in GC chemo-resistance knockdown of ANXA1, via inhibiting autophagy, enhancing the sensitivity of OXA-resistant GC cells to OXA in vitro and in vivo. Mechanically, we identified that PI3K/AKT/mTOR signaling pathway was activated in the ANXA1 stable knockdown AGS/OXA cells, which leads to the suppression of autophagy. ANXA1 functions as a chemoresistant gene in GC cells by targeting the PI3K/AKT/mTOR signaling pathway and might be a prognostic predictor for GC patients who receive OXA-based chemotherapy.


Asunto(s)
Anexina A1 , Neoplasias Gástricas , Humanos , Anexina A1/metabolismo , Autofagia/genética , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
3.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38612447

RESUMEN

Hemophilia A (HA) is a common X-linked recessive hereditary bleeding disorder. Coagulation factor VIII (FVIII) is insufficient in patients with HA due to the mutations in the F8 gene. The restoration of plasma levels of FVIII via both recombinant B-domain-deleted FVIII (BDD-FVIII) and B-domain-deleted F8 (BDDF8) transgenes was proven to be helpful. FVIII-Padua is a 23.4 kb tandem repeat mutation in the F8 associated with a high F8 gene expression and thrombogenesis. Here we screened a core enhancer element in FVIII-Padua for improving the F8 expression. In detail, we identified a 400 bp efficient enhancer element, C400, in FVIII-Padua for the first time. The core enhancer C400 extensively improved the transcription of BDDF8 driven by human elongation factor-1 alpha in HepG2, HeLa, HEK-293T and induced pluripotent stem cells (iPSCs) with different genetic backgrounds, as well as iPSCs-derived endothelial progenitor cells (iEPCs) and iPSCs-derived mesenchymal stem cells (iMSCs). The expression of FVIII protein was increased by C400, especially in iEPCs. Our research provides a novel molecular target to enhance expression of FVIII protein, which has scientific value and application prospects in both viral and nonviral HA gene therapy strategies.


Asunto(s)
Hemofilia A , Hemostáticos , Humanos , Factor VIII/genética , Hemofilia A/genética , Hemofilia A/terapia , Terapia Genética , Elementos de Facilitación Genéticos
4.
Immunology ; 168(1): 135-151, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36082430

RESUMEN

B cells constitute a major component of infiltrating immune cells in colorectal cancer (CRC). However, the characteristics of B cells and their clinical significance remain unclear. In this study, using single-cell RNA sequencing and multicolour immunofluorescence staining experiments, we identified five distinct subtypes of B cells with their marker genes, distribution patterns and functional properties in the CRC tumour microenvironment. Meanwhile, we found a higher proportion of IgG plasma cells in tumour sites than that in adjacent normal mucosal tissues. In addition, the CXCL13-producing CD8+ T cells in the tumour tissues could promote the formation of tertiary lymphoid structure (TLS) B cells, and the CCL28-CCR10 axis is pivotal for IgG plasma cell migration from the periphery of TLSs to the tumour stroma. Finally, we identified four distinct colon immune classes (CICs: A-D) and found that CD20+ B cells within TLSs were enriched in one immune-inflamed or hot tumour group (CIC D). This B cell-rich group, which was characterized by strong antigen presentation, IgG plasma cells accumulation, microsatellite instability-high (MSI-H) and high tumour mutation burden (TMB-H), as well as immunosuppressive property in particular, might become a potential predictive biomarker for future immunotherapy. Additionally, in an immunotherapy cohort, patients with the enrichment of B cells and TLSs were demonstrated to obtain significant therapeutic advantages. Together, our findings provide the detailed landscape of infiltrating B cells and their potential clinical significance in CRC.


Asunto(s)
Neoplasias Colorrectales , Estructuras Linfoides Terciarias , Humanos , Linfocitos T CD8-positivos , Pronóstico , Linfocitos B , Inmunoglobulina G , Microambiente Tumoral
5.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36614229

RESUMEN

Primary congenital hypothyroidism (CH) is a common neonatal endocrine disorder characterized by elevated concentrations of thyroid stimulating hormone (TSH) and low concentrations of free thyroxine (FT4). PAX8 and NKX2-1 are important transcription factors involved in thyroid development. In this study, we detected three novel variants in PAX8 (c.149A > C and c.329G > A) and NKX2-1 (c.706A > G) by whole exome sequencing (WES) in three unrelated CH patients with variable phenotypes. The results of Western blot and immunofluorescence analysis showed that the three variants had no effect on protein expression and subcellular localization. However, the results of the electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay suggested that the three variants in PAX8 and NKX2-1 both affected their DNA-binding ability and reduced their transactivation capacity. Moreover, a dominant-negative effect in K236E−NKX2-1 was identified by dual-luciferase reporter assay. To sum up, our findings extend our knowledge of the current mutation spectrum of PAX8 and NKX2-1 and provide important information for diagnosing, treating, and preventing CH in these families.


Asunto(s)
Hipotiroidismo Congénito , Humanos , Hipotiroidismo Congénito/genética , Factores de Transcripción Paired Box/genética , Factor de Transcripción PAX8/genética , Mutación
6.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240366

RESUMEN

Hemophilia B (HB) is an X-linked recessive disease caused by F9 gene mutation and functional coagulation factor IX (FIX) deficiency. Patients suffer from chronic arthritis and death threats owing to excessive bleeding. Compared with traditional treatments, gene therapy for HB has obvious advantages, especially when the hyperactive FIX mutant (FIX-Padua) is used. However, the mechanism by which FIX-Padua works remains ambiguous due to a lack of research models. Here, in situ introduction of F9-Padua mutation was performed in human induced pluripotent stem cells (hiPSCs) via CRISPR/Cas9 and single-stranded oligodeoxynucleotides (ssODNs). The hyperactivity of FIX-Padua was confirmed to be 364% of the normal level in edited hiPSCs-derived hepatocytes, providing a reliable model for exploring the mechanism of the hyperactivity of FIX-Padua. Moreover, the F9 cDNA containing F9-Padua was integrated before the F9 initiation codon by CRISPR/Cas9 in iPSCs from an HB patient (HB-hiPSCs). Integrated HB-hiPSCs after off-target screening were differentiated into hepatocytes. The FIX activity in the supernatant of integrated hepatocytes showed a 4.2-fold increase and reached 63.64% of the normal level, suggesting a universal treatment for HB patients with various mutations in F9 exons. Overall, our study provides new approaches for the exploration and development of cell-based gene therapy for HB.


Asunto(s)
Hemofilia B , Células Madre Pluripotentes Inducidas , Humanos , Hemofilia B/genética , Hemofilia B/terapia , Mutación , Terapia Genética
7.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054807

RESUMEN

Hemophilia A (HA) is caused by mutations in the coagulation factor VIII (FVIII) gene (F8). Gene therapy is a hopeful cure for HA; however, FVIII inhibitors formation hinders its clinical application. Given that platelets promote coagulation via locally releasing α-granule, FVIII ectopically expressed in platelets has been attempted, with promising results for HA treatment. The B-domain-deleted F8 (BDDF8), driven by a truncated ITGA2B promoter, was targeted at the ribosomal DNA (rDNA) locus of HA patient-specific induced pluripotent stem cells (HA-iPSCs). The F8-modified, human induced pluripotent stem cells (2bF8-iPSCs) were differentiated into induced hematopoietic progenitor cells (iHPCs), induced megakaryocytes (iMKs), and mesenchymal stem cells (iMSCs), and the FVIII expression was detected. The ITGA2B promoter-driven BDDF8 was site-specifically integrated into the rDNA locus of HA-iPSCs. The 2bF8-iPSCs were efficiently differentiated into 2bF8-iHPCs, 2bF8-iMKs, and 2bF8-iMSCs. FVIII was 10.31 ng/106 cells in lysates of 2bF8-iHPCs, compared to 1.56 ng/106 cells in HA-iHPCs, and FVIII was 3.64 ng/106 cells in 2bF8-iMSCs lysates, while 1.31 ng/106 cells in iMSCs with CMV-driven BDDF8. Our results demonstrated a high expression of FVIII in iHPCs and iMSCs derived from hiPSCs with site-specific integration of ITGA2B promoter-driven BDDF8, indicating potential clinical prospects of this platelet-targeted strategy for HA gene therapy.


Asunto(s)
Expresión Génica Ectópica , Factor VIII/genética , Células Madre Hematopoyéticas/metabolismo , Hemofilia A/genética , Células Madre Pluripotentes Inducidas/metabolismo , Integrina alfa2/genética , Células Madre Mesenquimatosas/metabolismo , Regiones Promotoras Genéticas , Secuencia de Bases , ADN Ribosómico/genética , Factor VIII/química , Factor VIII/metabolismo , Marcación de Gen , Sitios Genéticos , Vectores Genéticos/metabolismo , Humanos , Integrina alfa2/metabolismo , Megacariocitos/metabolismo , Dominios Proteicos , Eliminación de Secuencia , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
8.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36012442

RESUMEN

Duchenne muscular dystrophy (DMD) is the most common fatal muscle disease, with an estimated incidence of 1/3500-1/5000 male births, and it is associated with mutations in the X-linked DMD gene encoding dystrophin, the largest known human gene. There is currently no cure for DMD. The large size of the DMD gene hampers exogenous gene addition and delivery. The genetic correction of DMD patient-derived induced pluripotent stem cells (DMD-iPSCs) and differentiation into suitable cells for transplantation is a promising autologous therapeutic strategy for DMD. In this study, using CRISPR/Cas9, the full-length dystrophin coding sequence was reconstructed in an exon-50-deleted DMD-iPSCs by the targeted addition of exon 50 at the junction of exon 49 and intron 49 via homologous-directed recombination (HDR), with a high targeting efficiency of 5/15, and the genetically corrected iPSCs were differentiated into cardiomyocytes (iCMs). Importantly, the full-length dystrophin expression and membrane localization were restored in genetically corrected iPSCs and iCMs. Thus, this is the first study demonstrating that full-length dystrophin can be restored in iPSCs and iCMs via targeted exon addition, indicating potential clinical prospects for DMD gene therapy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Distrofia Muscular de Duchenne , Distrofina/genética , Distrofina/metabolismo , Exones/genética , Humanos , Masculino , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Miocitos Cardíacos/metabolismo
9.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887289

RESUMEN

Spinal muscular atrophy (SMA) is a devastating autosomal recessive motor neuron disease associated with mutations in the survival motor neuron 1 (SMN1) gene, the leading genetic cause of infant mortality. A nearly identical copy gene (SMN2) is retained in almost all patients with SMA. However, SMN2 fails to prevent disease development because of its alternative splicing, leading to a lack of exon 7 in the majority of SMN2 transcripts and yielding an unstable truncated protein. Several splicing regulatory elements, including intronic splicing silencer-N1 (ISS-N1) of SMN2 have been described. In this study, targeted-deletion of ISS-N1 was achieved using prime editing (PE) in SMA patient-specific induced pluripotent stem cells (SMA-iPSCs) with a high efficiency of 7/24. FL-SMN expression was restored in the targeted-deletion iPS clones and their derived motor neurons (iMNs). Notably, the apoptosis of the iMNs, caused by the loss of SMN protein that leads to the hyperactivity of endoplasmic reticulum (ER) stress, was alleviated in targeted-deletion iPSCs derived-iMNs. Thus, this is the first study to demonstrate that the targeted-deletion of ISS-N1 via PE for restoring FL-SMN expression holds therapeutic promise for SMA.


Asunto(s)
Atrofia Muscular Espinal , Empalme del ARN , Empalme Alternativo , Exones/genética , Humanos , Intrones , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , Empalme del ARN/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
10.
AAPS PharmSciTech ; 23(6): 169, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715519

RESUMEN

Amorphous solid dispersion (ASD) has been well known as a potential strategy to improve the bioavailability and dissolution performance of poorly water-soluble drugs. The primary concern of this approach is the long-term stability of the amorphous drug in the solid dispersion. Accurate prediction and detection of the solubility and miscibility of drug in polymeric binary system will be a milestone to the development of ASDs. In this investigation, a method based on Flory-Huggins (F-H) theory was proposed to predict and calculate the solubility and miscibility of the drug in polymeric matrix and construct the phase diagram to identify the relevance between drug loading and temperature for ASDs development. Indomethacin (Indo) was chosen as the model drug, and polyvinyl pyrrolidone vinyl acetate (Kollidon® VA 64) was used as a polymeric carrier for the ASD systems. Physical mixtures were prepared with different drug loadings (10 to 90%) and analyzed by differential scanning calorimetry (DSC). The interaction parameter χ was calculated for physical mixtures by the melting point depression and solubility parameter contribution methods. The phase diagram was constructed to investigate the impact of other parameters like drug loading, processing temperature, and Gibbs free energy of mixing (ΔGmix). For further validation, formulations were developed using HME to verify the accuracy of the phase diagram and to guide in the hot-melt extrusion (HME) process design space and optimization.


Asunto(s)
Química Farmacéutica , Polímeros , Química Farmacéutica/métodos , Cristalización , Composición de Medicamentos/métodos , Estabilidad de Medicamentos , Polímeros/química , Povidona , Solubilidad , Termodinámica
11.
Biochem Biophys Res Commun ; 545: 40-45, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33540285

RESUMEN

Duchenne muscular dystrophy (DMD), the most common lethal muscular disorder, affects 1 in 5000 male births. It is caused by mutations in the X-linked dystrophin gene (DMD), and there is no effective treatment currently. Gene addition is a promising strategy owing to its universality for patients with all gene mutations types. In this study, we describe a site-specific gene addition strategy in induced pluripotent stem cells (iPSCs) derived from a DMD patient with exon 50 deletion. By using transcription activator-like effector nickases (TALENickases), the mini-dystrophin cassette was precisely targeted at the ribosomal RNA gene (rDNA) locus via homologous recombination with high targeting efficiency. The targeted clone retained the main pluripotent properties and was differentiated into cardiomyocytes. Significantly, the dystrophin expression and membrane localization were restored in the genetic corrected iPSCs and their derived cardiomyocytes. More importantly, the enhanced spontaneous contraction was observed in modified cardiomyocytes. These results provide a proof of principle for an efficient targeted gene addition for DMD gene therapy and represents a significant step toward precisely therapeutic for DMD.


Asunto(s)
ADN Ribosómico/genética , Distrofina/genética , Terapia Genética/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Diferenciación Celular , Línea Celular , Técnicas de Reprogramación Celular , Distrofina/metabolismo , Exones , Expresión Génica , Marcación de Gen/métodos , Humanos , Células Madre Pluripotentes Inducidas/citología , Mutación con Pérdida de Función , Masculino , Distrofia Muscular de Duchenne/orina , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Prueba de Estudio Conceptual , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Orina/citología
12.
Dev Growth Differ ; 60(4): 205-215, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29696633

RESUMEN

Reporter embryonic stem cell (ESC) lines with tissue-specific reporter genes may contribute to optimizing the differentiation conditions in vitro as well as trafficking transplanted cells in vivo. To optimize and monitor endothelial cell (EC) differentiation specifically, here we targeted the enhanced green fluorescent protein (EGFP) reporter gene at the junction of 5'UTR and exon2 of the endothelial specific marker gene CD144 using TALENs in human ESCs (H9) to generate a EGFP-CD144-reporter ESC line. The reporter cells expressed EGFP and CD144 increasingly and specifically without unexpected effects during the EC differentiation. The EC differentiation protocol was optimized and applied to EC differentiation from hiPSCs, resulting in an efficient and simplified endothelial differentiation approach. Here we created our own optimized and robust protocol for EC differentiation of hESCs and hiPSCs by generating the lineage-specific site-specific integration reporter cell lines, showing great potential to be applied in the fields such as trafficking gene and cell fate in vivo in preclinical animal models.


Asunto(s)
Antígenos CD/genética , Cadherinas/genética , Diferenciación Celular/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Células Madre Embrionarias Humanas , Células HEK293 , Humanos
13.
Med Sci Monit ; 24: 8524-8532, 2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30473583

RESUMEN

BACKGROUND Age is a prognostic factor for multiple malignancies. In this study, we aimed to assess the effect of age on the cancer-specific survival (CSS) of patients with gastric signet-ring cell carcinoma (SRC). MATERIAL AND METHODS Information on patients with gastric SRC was extracted from the Surveillance, Epidemiology, and End Results database. Chi-squared tests were used to demonstrate distribution differences, and Kaplan-Meier analysis and Cox regression models were used to analyze the impact of age on CSS. RESULTS A total of 4596 patients were enrolled and divided into 3 subgroups according to age (<45, 45-74, and >74 years old). Higher percentages of T4, N2, and M1 disease were observed in the <45-year-old group (all P<0.001). Kaplan-Meier plots showed that the youngest group had the most favorable 5-year CSS rate (36.3%), which remained true after stratification according to tumor stage. Multivariate Cox regression models demonstrated a poorer survival outcome for >74-year-old than for <45-year-old patients (hazard ratio 1.841, 95% confidence interval 1.636-2.071; P<0.001). CONCLUSIONS Young age is associated with improved survival, even though younger patients generally present with a more advanced-stage disease.


Asunto(s)
Carcinoma de Células en Anillo de Sello/mortalidad , Neoplasias Gástricas/mortalidad , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Carcinoma de Células en Anillo de Sello/patología , Bases de Datos Factuales , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , Modelos de Riesgos Proporcionales , Programa de VERF , Neoplasias Gástricas/patología , Tasa de Supervivencia
14.
Int J Mol Sci ; 19(10)2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30301136

RESUMEN

Hemophilia B (HB) is an X-linked recessive bleeding disorder, caused by F9 gene deficiency. Gene therapy combined with the CRISPR/Cas9 technology offers a potential cure for hemophilia B. Now the Cas9 nickase (Cas9n) shows a great advantage in reducing off-target effect compared with wild-type Cas9. In this study, we found that in the multicopy ribosomal DNA (rDNA) locus, the homology directed recombination (HDR) efficiency induced by sgRNA-Cas9n was much higher than sgRNA-Cas9, meanwhile without off-target in six predicted sites. After co-transfection into mESCs with sgRNA-Cas9n and a non-viral rDNA targeting vector pMrnF9, harboring the homology donor template and the human F9 expression cassette, a recombination efficiency of 66.7% was achieved and all targeted clones were confirmed to be site-specific integration of F9 in the rDNA locus by PCR and southern blotting. Targeted mESCs retained the main pluripotent properties and were then differentiated into hepatic progenitor like cells (HPLCs) and mature hepatocytes, which were characterized by hepatic markers and functional assays. Importantly, the differentiated cells could transcribe exogenous F9 and secrete coagulation factor IX (FIX) proteins, suggesting active transcription and stable inheritance of transgenes in the rDNA locus. After intrasplenical transplantation in severe combined immune deficiency (SCID) mice, targeted HPLCs could survive and migrate from spleen to liver, resulting in secretion of exogenous FIX into blood. In summary, we demonstrate an efficient and site-specific gene targeting strategy in rDNA locus for stem cell-based gene therapy for hemophilia B.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Ribosómico/genética , Desoxirribonucleasa I/metabolismo , Factor IX/genética , Marcación de Gen/métodos , Hemofilia B/terapia , Animales , Proteína 9 Asociada a CRISPR/genética , ADN Ribosómico/metabolismo , Desoxirribonucleasa I/genética , Factor IX/metabolismo , Sitios Genéticos , Hepatocitos/citología , Humanos , Ratones , Ratones SCID , Células Madre Embrionarias de Ratones/citología
15.
AAPS PharmSciTech ; 19(8): 3681-3686, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30280349

RESUMEN

Biological products such as protein-based biopharmaceuticals are playing an important role in the healthcare and pharmaceutical industry. The interaction between biological products and packaging materials has become the focus of many studies since it can reduce the effectiveness of biological products. These interactions are heavily influenced by the surface properties and physicochemical nature of the therapeutic agents and the packaging materials. Therefore, it is critical to understand the interactions between packaging materials and biological products in order to design biocompatible packaging materials and develop approaches to minimize adverse interactions. We describe the interactions that occur when using several common packaging materials, including glass and polymer. We discuss the interaction between these materials and biological products such as blood, blood derivatives, recombinant proteins, monoclonal antibodies, and gene therapeutics. We also summarize approaches for overcoming these interactions. Understanding the interactions between biological materials and packaging materials is critical for the development of novel packaging materials that improve the safety of pharmaceutical products.


Asunto(s)
Productos Biológicos/química , Embalaje de Productos , Industria Farmacéutica , Vidrio/química , Polímeros/química
16.
Entropy (Basel) ; 20(4)2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33265343

RESUMEN

A formula has been established, which is based on the size-dependence of a metal's melting point, to elucidate the atomic diffusion coefficient of nanostructured materials by considering the role of grain-boundary energy. When grain size is decreased, a decrease in the atomic diffusion activation energy and an increase in the corresponding diffusion coefficient can be observed. Interestingly, variations in the atomic diffusion activation energy of nanostructured materials are small relative to nanoparticles, depending on the size of the grain boundary energy. Our theoretical prediction is in accord with the computer simulation and experimental results of the metals described.

17.
Biochem Biophys Res Commun ; 472(1): 144-9, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26921444

RESUMEN

Hemophilia A (HA) is a monogenic disease due to lack of the clotting factor VIII (FVIII). This deficiency may lead to spontaneous joint hemorrhages or life-threatening bleeding but there is no cure for HA until very recently. In this study, we derived induced pluripotent stem cells (iPSCs) from patients with severe HA and used transcription activator-like effector nickases (TALENickases) to target the factor VIII gene (F8) at the multicopy ribosomal DNA (rDNA) locus in HA-iPSCs, aiming to rescue the shortage of FVIII protein. The results revealed that more than one copy of the exogenous F8 could be integrated into the rDNA locus. Importantly, we detected exogenous F8 mRNA and FVIII protein in targeted HA-iPSCs. After they were differentiated into endothelial cells (ECs), the exogenous FVIII protein was still detectable. Thus, it is showed that the multicopy rDNA locus could be utilized as an effective target site in patient-derived iPSCs for gene therapy. This strategy provides a novel iPSCs-based therapeutic option for HA and other monogenic diseases.


Asunto(s)
Factor VIII/genética , Marcación de Gen/métodos , Hemofilia A/genética , Hemofilia A/terapia , Animales , Técnicas de Cocultivo , ADN Ribosómico/genética , Desoxirribonucleasa I , Expresión Génica , Terapia Genética/métodos , Hemofilia A/sangre , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Orina/citología
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 32(5): 609-14, 2015 Oct.
Artículo en Zh | MEDLINE | ID: mdl-26418976

RESUMEN

OBJECTIVE To generate hemophilia A (HA) patient-specific inducible pluripotent stem cells (iPSCs) and induce endothelial differentiation. METHODS Tubular epithelial cells were isolated and cultured from the urine of HA patients. The iPSCs were generated by forced expression of Yamanaka factors (Oct4, Sox2, c-Myc and Klf4) using retroviruses and characterized by cell morphology, pluripotent marker staining and in vivo differentiation through teratoma formation. Induced endothelial differentiation of the iPSCs was achieved with the OP9 cell co-culture method. RESULTS Patient-specific iPSCs were generated from urine cells of the HA patients, which could be identified by cell morphology, pluripotent stem cell surface marker staining and in vivo differentiation of three germ layers. The teratoma experiment has confirmed that such cells could differentiate into endothelial cells expressing the endothelial-specific markers CD144, CD31 and vWF. CONCLUSION HA patient-specific iPSCs could be generated from urine cells and can differentiate into endothelial cells. This has provided a new HA disease modeling approach and may serve as an applicable autologous cell source for gene correction and cell therapy studies for HA.


Asunto(s)
Hemofilia A/patología , Hemofilia A/orina , Células Madre Pluripotentes Inducidas/citología , Orina/citología , Diferenciación Celular , Hemofilia A/terapia , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Factor 4 Similar a Kruppel
19.
Biochem Biophys Res Commun ; 446(1): 261-6, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24589733

RESUMEN

Although targeted gene addition could be stimulated strikingly by a DNA double strand break (DSB) created by either zinc finger nucleases (ZFNs) or TALE nucleases (TALENs), the DSBs are really mutagenic and toxic to human cells. As a compromised solution, DNA single-strand break (SSB) or nick has been reported to mediate high efficient gene addition but with marked reduction of random mutagenesis. We previously demonstrated effective targeted gene addition at the human multicopy ribosomal DNA (rDNA) locus, a genomic safe harbor for the transgene with therapeutic potential. To improve the transgene integration efficiency by using TALENs while lowering the cytotoxicity of DSBs, we created both TALENs and TALE nickases (TALENickases) targeting this multicopy locus. A targeting vector which could integrate a GFP cassette at the rDNA locus was constructed and co-transfected with TALENs or TALENickases. Although the fraction of GFP positive cells using TALENs was greater than that using TALENickases during the first few days after transfection, it reduced to a level less than that using TALENickases after continuous culture. Our findings showed that the TALENickases were more effective than their TALEN counterparts at the multi-copy rDNA locus, though earlier studies using ZFNs and ZFNickases targeting the single-copy loci showed the reverse. Besides, TALENickases mediated the targeted integration of a 5.4 kb fragment at a frequency of up to 0.62% in HT1080 cells after drug selection, suggesting their potential application in targeted gene modification not being limited at the rDNA locus.


Asunto(s)
ADN Ribosómico/genética , Desoxirribonucleasa I/metabolismo , Técnicas de Sustitución del Gen/métodos , Mutagénesis Insercional , Línea Celular , Desoxirribonucleasa I/genética , Marcación de Gen , Terapia Genética , Células HEK293 , Humanos , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfección , Dedos de Zinc
20.
Int J Biol Macromol ; 274(Pt 1): 133337, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908624

RESUMEN

Chitin nanofibers are widely used in many fields because of their biocompatibility, renewability and excellent mechanical properties. Herein, zwitterionically charged chitin nanofibers (ZC-ChNFs) were prepared from chitin via one step chemical modification (oxalic acid pretreatment) and subsequent ultrasound treatment. Effects of pretreatment time on size of the ZC-ChNFs and pH of ZC-ChNF suspensions on the thickness, porosity, refractive index and antireflective capacity of ZC-ChNF coatings were investigated. It was found that, by adjusting pH of the ZC-ChNF suspension, porosity and refractive index of the ZC-ChNF coatings could be controlled. The ZC-ChNF coatings fabricated with smaller ZC-ChNFs had higher antireflective performance and the transmittance gain of a glass with a ZC-ChNF coating was about 3.5 % at a wavelength of 550 nm compared to the bare glass. The results of this work provide a promising pathway to fabricate antireflective coating with ZC-ChNFs just by controlling the pH of ZC-ChNF suspensions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA