Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 126: 155435, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394727

RESUMEN

BACKGROUND: Accumulating evidence indicates the crucial role of microglia-mediated inflammation and the NLR family pyrin domain containing 3 (NLRP3) inflammasome-mediated pyroptosis in the pathogenesis of Parkinson's disease (PD). Baohuoside I, a natural flavonoid extracted from Herba Epimedii, has been shown to possess anti-inflammatory effects, but its potential neuroprotective effects and mechanism against PD have not been documented. STUDY DESIGN AND METHODS: The anti-inflammatory effects of Baohuoside I were evaluated by LPS-induced BV2 cells or primary microglia isolated from wide type or G protein-coupled estrogen receptor (GPER) gene knockout mice. The underlying mechanism related to GPER-mediated NLRP3 inflammasome inhibition was further explored using LPS-induced GPER+/+ or GPER-/- mouse models of PD. The neuroprotective effects of Baohuoside I were detected through western blot analysis, real-time PCR, molecular docking, mouse behavioral tests, immunofluorescence, and immunohistochemistry. RESULTS: Baohuoside I significantly alleviated LPS-induced neuroinflammation by inhibiting the activation of NF-κB signal and the increase of pyroptosis levels as evidenced by the downregulated expression of pyroptosis-related proteins (NLRP3, ASC, pro-Caspase-1, IL-1ß) in microglia cells. Intragastric administration of Baohuoside I protected against LPS-induced motor dysfunction and loss of dopaminergic neurons, reduced pro-inflammatory cytokines expressions, and inhibited microglial (Iba-1) and astrocyte (GFAP) activation in the nigrostriatal pathway in LPS-induced mouse model of PD. Pretreatment with GPER antagonist G15 in microglia cells or GPER gene deletion in mice significantly blocked the inhibitory effects of Baohuoside I on LPS-induced neuroinflammation and activation of the NLRP3/ASC/Caspase-1 pathway. Molecular docking further indicated that Baohuoside I might bind to GPER directly with a binding energy of -10.4 kcal/mol. CONCLUSION: Baohuoside I provides neuroprotective effects against PD by inhibiting the activation of the NF-κB signal and NLRP3/ASC/Caspase-1 pathway. The molecular target for its anti-inflammatory effects is proved to be GPER in the PD mouse model. Baohuoside I may be a valuable anti-neuroinflammatory agent and a drug with well-defined target for the treatment of PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , Flavonoides/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Caspasas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Microglía , Ratones Endogámicos C57BL
2.
Adv Sci (Weinh) ; 10(26): e2302554, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37395386

RESUMEN

2D lead halide perovskites (LHPs) show strong excitonic and spin-orbit coupling effects, generating a facile spin injection. Besides, they possess a polaron character due to the soft crystal lattice, which can prolong the spin lifetime, making them favorable materials for spintronic applications. Here, the spin dynamics of 2D PEA2 PbI4 (MAPbI3 )n -l thin films with different layers by temperature- and pump fluence-dependent circularly polarization-resolved transient absorption (TA) measurements is studied. These results indicate that the spin depolarization mechanism is gradually converted from the Maialle-Silva-Sham (MSS) mechanism to the polaronic states protection mechanism with the layer number increasing from = 1 to 3, which is determined by the interplay between the strength of Coulomb exchange interaction and the strength of polaronic effect. While for ≥ 4, the Elliot-Yafet (EY) impurities mechanism is proposed, in which the formed polaronic states with free charge carriers no longer play the protective role.

3.
Biomed Pharmacother ; 156: 113955, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36411637

RESUMEN

Mitochondrial dysfunction and oxidative stress play important roles in the neuropathogenesis of Parkinson's disease (PD). Epimedin B, the second highest active ingredient in the flavonoids of Herba Epimedii, has been proven effective in treating osteoporosis and oxaliplatin-induced peripheral neuropathy. The present study aims to investigate the neuroprotective effects of Epimedin B in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP)-induced mouse model of PD, and the involvement of G protein-coupled estrogen receptor (GPER)-mediated anti-apoptosis as well as anti-endoplasmic reticulum stress. Molecular docking revealed that Epimedin B could directly bind to GPER at the same site as GPER agonist G1 and the binding energy was - 7.3 kcal/mol. Epimedin B treatment ameliorated MPTP-induced motor dysfunction and alleviated the decreased contents of DA with its metabolites in the striatum and the loss of tyrosine hydroxylase-immunoreactive (TH-IR) neurons in the substantial nigra pars compacta (SNpc). Epimedin B treatment markedly prevented MPTP-induced changes in apoptosis-related protein Bcl-2 and Bax as well as endoplasmic reticulum stress-related protein glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). Pharmacological blockade with GPER antagonist G15 could antagonize these neuroprotective effects of Epimedin B on the nigrostriatal system. Moreover, the anti-apoptosis and anti-endoplasmic reticulum stress effects of Epimedin B against MPTP toxicity were significantly reduced in GPER knockout (GPER-/-) mice. The present study provides the first evidence that Epimedin B can protect against MPTP-induced PD mice model. GPER may be a potential target for the neuroprotective effect of Epimedin B against PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Simulación del Acoplamiento Molecular , Flavonoides/farmacología , Flavonoides/uso terapéutico , Modelos Animales de Enfermedad , Estrógenos , Receptores Acoplados a Proteínas G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA