Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 590(7847): 594-599, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627812

RESUMEN

Natural load-bearing materials such as tendons have a high water content of about 70 per cent but are still strong and tough, even when used for over one million cycles per year, owing to the hierarchical assembly of anisotropic structures across multiple length scales1. Synthetic hydrogels have been created using methods such as electro-spinning2, extrusion3, compositing4,5, freeze-casting6,7, self-assembly8 and mechanical stretching9,10 for improved mechanical performance. However, in contrast to tendons, many hydrogels with the same high water content do not show high strength, toughness or fatigue resistance. Here we present a strategy to produce a multi-length-scale hierarchical hydrogel architecture using a freezing-assisted salting-out treatment. The produced poly(vinyl alcohol) hydrogels are highly anisotropic, comprising micrometre-scale honeycomb-like pore walls, which in turn comprise interconnected nanofibril meshes. These hydrogels have a water content of 70-95 per cent and properties that compare favourably to those of other tough hydrogels and even natural tendons; for example, an ultimate stress of 23.5 ± 2.7 megapascals, strain levels of 2,900 ± 450 per cent, toughness of 210 ± 13 megajoules per cubic metre, fracture energy of 170 ± 8 kilojoules per square metre and a fatigue threshold of 10.5 ± 1.3 kilojoules per square metre. The presented strategy is generalizable to other polymers, and could expand the applicability of structural hydrogels to conditions involving more demanding mechanical loading.

2.
J Am Chem Soc ; 145(50): 27450-27458, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38079611

RESUMEN

Upcycling plastic waste into reprocessable materials with performance-advantaged properties would contribute to the development of a circular plastics economy. Here, we modify branched polyolefins and postconsumer polyethylene through a versatile C-H functionalization approach using thiosulfonates as a privileged radical group transfer functionality. Cross-linking the functionalized polyolefins with polytopic amines provided dynamically cross-linked polyolefin networks enabled by associative bond exchange of diketoenamine functionality. A combination of resonant soft X-ray scattering and grazing incidence X-ray scattering revealed hierarchical phase morphology in which diketoenamine-rich microdomains phase-separate within amorphous regions between polyolefin crystallites. The combination of dynamic covalent cross-links and microphase separation results in useful and improved mechanical properties, including a ∼4.5-fold increase in toughness, a reduction in creep deformation at temperatures relevant to use, and high-temperature structural stability compared to the parent polyolefin. The dynamic nature of diketoenamine cross-links provides stress relaxation at elevated temperatures, which enabled iterative reprocessing of the dynamic covalent polymer network with little cycle-to-cycle property fade. The ability to convert polyolefin waste into a reprocessable thermoformable material with attractive thermomechanical properties provides additional optionality for upcycling to enable future circularity.

3.
Proc Natl Acad Sci U S A ; 117(21): 11240-11246, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32393646

RESUMEN

Ice accumulation causes various problems in our daily life for human society. The daunting challenges in ice prevention and removal call for novel efficient antiicing strategies. Recently, photothermal materials have gained attention for creating icephobic surfaces owing to their merits of energy conservation and environmental friendliness. However, it is always challenging to get an ideal photothermal material which is cheap, easily fabricating, and highly photothermally efficient. Here, we demonstrate a low-cost, high-efficiency superhydrophobic photothermal surface, uniquely based on inexpensive commonly seen candle soot. It consists of three components: candle soot, silica shell, and polydimethylsiloxane (PDMS) brushes. The candle soot provides hierarchical nano/microstructures and photothermal ability, the silica shell strengthens the hierarchical candle soot, and the grafted low-surface-energy PDMS brushes endow the surface with superhydrophobicity. Upon illumination under 1 sun, the surface temperature can increase by 53 °C, so that no ice can form at an environmental temperature as low as -50 °C and it can also rapidly melt the accumulated frost and ice in 300 s. The superhydrophobicity enables the melted water to slide away immediately, leaving a clean and dry surface. The surface can also self-clean, which further enhances its effectiveness by removing dust and other contaminants which absorb and scatter sunlight. In addition, after oxygen plasma treatment, the surface can restore superhydrophobicity with sunlight illumination. The presented icephobic surface shows great potential and broad impacts owing to its inexpensive component materials, simplicity, ecofriendliness, and high energy efficiency.

4.
Small ; 16(46): e2003638, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33107169

RESUMEN

Photonic microspheres offer building units with unique topological structures and specific optical functions for diverse applications. Here, a new class of inorganic photonic microspheres with superior robustness, optical and electrical properties is reported by introducing a unique localized concentric ordering architecture and chemical interaction, which further serve as building blocks for deep pattern encoding and multiple sensory optoelectronic devices. Benefiting from localized concentric ordering architecture, the resultant photonic microspheres demonstrate orientation- and angle-independent structural colors. Notably, the formation of well-combined lamellae inorganic layers by chemical interaction grants the microspheres superior mechanical robustness, excellent solvent resistance, thermal stability, and multiple optoelectronic properties simultaneously, rarely seen in previous reports. Owing to these merits, such microspheres are used to construct diverse encoded photonic patterns for anti-counterfeiting applications. Interestingly, cross-communication among neighboring microspheres creates complex photonic sub-patterns, which provide "fingerprint information" with deep encryption security. Moreover, a single photonic microsphere-based optoelectronic microsensor is demonstrated for the first time, which achieves appealing application for real-time health monitoring and safety warning toward triple environmental stimuli. This work not only provides a new kind of robust, multifunctional photonic material, but also opens a new avenue for their uses as complexed pattern encoding and multi-parametric sensing platforms.

5.
Sci Adv ; 10(14): eadl0568, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569038

RESUMEN

Moving toward a circular plastics economy is a vital aspect of global resource management. Chemical recycling of plastics ensures that high-value monomers can be recovered from depolymerized plastic waste, thus enabling circular manufacturing. However, to increase chemical recycling throughput in materials recovery facilities, the present understanding of polymer transport, diffusion, swelling, and heterogeneous deconstruction kinetics must be systematized to allow industrial-scale process design, spanning molecular to macroscopic regimes. To develop a framework for designing depolymerization processes, we examined acidolysis of circular polydiketoenamine elastomers. We used magnetic resonance to monitor spatially resolved observables in situ and then evaluated these data with a fractal method that treats nonlinear depolymerization kinetics. This approach delineated the roles played by network architecture and reaction medium on depolymerization outcomes, yielding parameters that facilitate comparisons between bulk processes. These streamlined methods to investigate polymer hydrolysis kinetics portend a general strategy for implementing chemical recycling on an industrial scale.

6.
Science ; 381(6665): 1433-1440, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37769088

RESUMEN

Functional polyethylenes possess valuable bulk and surface properties, but the limits of current synthetic methods narrow the range of accessible materials and prevent many envisioned applications. Instead, these materials are often used in composite films that are challenging to recycle. We report a Cu-catalyzed amination of polyethylenes to form mono- and bifunctional materials containing a series of polar groups and substituents. Designed catalysts with hydrophobic moieties enable the amination of linear and branched polyethylenes without chain scission or cross-linking, leading to polyethylenes with otherwise inaccessible combinations of functional groups and architectures. The resulting materials possess tunable bulk and surface properties, including toughness, adhesion to metal, paintability, and water solubility, which could unlock applications for functional polyethylenes and reduce the need for complex composites.

7.
Adv Mater ; 34(32): e2201772, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35703311

RESUMEN

Metal patterning via additive manufacturing has been phasing-in to broad applications in many medical, electronics, aerospace, and automotive industries. While previous efforts have produced various promising metal-patterning strategies, their complexity and high cost have limited their practical application in rapid production and prototyping. Herein, a one-step gold printing technique based on anion-assisted photochemical deposition (APD), which can directly print highly conductive gold patterns (1.08 × 107 S m-1 ) under ambient conditions without post-annealing treatment, is introduced. Uniquely, the APD uses specific ion effects with projection lithography to pattern Au nanoparticles and simultaneously sinter them into tunable porous gold structures. The significant influence of kosmotropic or chaotropic anions in the precursor ink on tuning the morphologies and conductivities of the printed patterns by employing a series of different ions, including Cl- ions, in the printing process is presented. Additionally, the resistance stabilities and the electrochemical properties of the APD-printed gold patterns are carefully investigated. The high conductivity and excellent conformability of the printed Au electrodes are demonstrated with reliable performance in electrophysiological signal delivery and acquisition for biomedical applications. This work exploits the potential of photochemical-deposition-based metal patterning in flexible electronic manufacturing.

8.
Adv Mater ; 33(26): e2100983, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34060153

RESUMEN

All-solid-state supercapacitors are seeing emerging applications in flexible and stretchable electronics. Supercapacitors with high capacitance, high power density, simple form factor, and good mechanical robustness are highly desired, which demands electrode materials with high surface area, high mass loading, good conductivity, larger thickness, low tortuosity, and high toughness. However, it has been challenging to simultaneously realize them in a single material. By compositing a superficial layer of tough hydrogel on conductive and low tortuous foams, a thick capacitor electrode with large capacitance (5.25 F cm-2 ), high power density (41.28 mW cm-2 ), and good mechanical robustness (ε = 140%, Γ = 1000 J m-2 ) is achieved. The tough hydrogel serves as both a load-bearing layer to maintain structural integrity during deformation and a permeable binder to allow interaction between the conductive electrode and electrolyte. It is shown that the tough hydrogel reinforcement is beneficial for both electrical and mechanical stability. With a simple design and facile fabrication, this strategy is generalizable for various conductive materials.

9.
iScience ; 24(9): 102989, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34505006

RESUMEN

Hydrogels have gained tremendous attention due to their versatility in soft electronics, actuators, biomedical sensors, etc. Due to the high water content, hydrogels are usually soft, weak, and freeze below 0°C, which brings severe limitations to applications such as soft robotics and flexible electronics in harsh environments. Most existing anti-freezing gels suffer from poor mechanical properties and urgently need further improvements. Here, we took inspirations from tendon and coniferous trees and provided an effective method to strengthen polyvinyl alcohol (PVA) hydrogel while making it freeze resistant. The salting-out effect was utilized to create a hierarchically structured polymer network, which induced superior mechanical properties (Young's modulus: 10.1 MPa, tensile strength: 13.5 MPa, and toughness: 127.9 MJ/m3). Meanwhile, the cononsolvency effect was employed to preserve the structure and suppress the freezing point to -60°C. Moreover, we have demonstrated the broad applicability of our material by fabricating PVA hydrogel-based hydraulic actuators and ionic conductors.

10.
ACS Appl Mater Interfaces ; 13(11): 12689-12697, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33263991

RESUMEN

Hydrogels with attractive stimuli-responsive volume changing abilities are seeing emerging applications as soft actuators and robots. However, many hydrogels are intrinsically soft and fragile for tolerating mechanical damage in real world applications and could not deliver high actuation force because of the mechanical weakness of the porous polymer network. Conventional tough hydrogels, fabricated by forming double networks, dual cross-linking, and compositing, could not satisfy both high toughness and high stimuli responsiveness. Herein, we present a material design of combining responsive and tough components in a single hydrogel network, which enables the synergistic realization of high toughness and actuation performance. We showcased this material design in an exemplary tough and thermally responsive hydrogel based on PVA/(PVA-MA)-g-PNIPAM, which achieved 100 times higher toughness (∼10 MJ/m3) and 20 times higher actuation stress (∼10 kPa) compared to conventional PNIPAM hydrogels, and a contraction ratio of up to 50% simultaneously. The effects of salt concentration, polymer ratio, and structural design on the mechanical and actuation properties have been systematically investigated. Utilizing 4D printing, actuators of various geometries were fabricated, as well as lattice-architected hydrogels with macro-voids, presenting 4 times faster actuation speed compared to bulk hydrogel, in addition to the high toughness, actuation force, and contraction ratio.

11.
Adv Mater ; 33(20): e2008235, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33829563

RESUMEN

Crosslinked polymers and gels are important in soft robotics, solar vapor generation, energy storage, drug delivery, catalysis, and biosensing. However, their attractive mass transport and volume-changing abilities are diffusion-limited, requiring miniaturization to avoid slow response. Typical approaches to improving diffusion in hydrogels sacrifice mechanical properties by increasing porosity or limit the total volumetric flux by directionally confining the pores. Despite tremendous efforts, simultaneous enhancement of diffusion and mechanical properties remains a long-standing challenge hindering broader practical applications of hydrogels. In this work, cononsolvency photopolymerization is developed as a universal approach to overcome this swelling-mechanical property trade-off. The as-synthesized poly(N-isopropylacrylamide) hydrogel, as an exemplary system, presents a unique open porous network with continuous microchannels, leading to record-high volumetric (de)swelling speeds, almost an order of magnitude higher than reported previously. This swelling enhancement comes with a simultaneous improvement in Young's modulus and toughness over conventional hydrogels fabricated in pure solvents. The resulting fast mass transport enables in-air operation of the hydrogel via rapid water replenishment and ultrafast actuation. The method is compatible with 3D printing. The generalizability is demonstrated by extending the technique to poly(N-tertbutylacrylamide-co-polyacrylamide) and polyacrylamide hydrogels, non-temperature-responsive polymer systems, validating the present hypothesis that cononsolvency is a generic phenomenon driven by competitive adsorption.

12.
Adv Mater ; 33(11): e2007829, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33554414

RESUMEN

Hydrogels, exhibiting wide applications in soft robotics, tissue engineering, implantable electronics, etc., often require sophisticately tailoring of the hydrogel mechanical properties to meet specific demands. For examples, soft robotics necessitates tough hydrogels; stem cell culturing demands various tissue-matching modulus; and neuron probes desire dynamically tunable modulus. Herein, a strategy to broadly alter the mechanical properties of hydrogels reversibly via tuning the aggregation states of the polymer chains by ions based on the Hofmeister effect is reported. An ultratough poly(vinyl alcohol) (PVA) hydrogel as an exemplary material (toughness 150 ± 20 MJ m-3 ), which surpasses synthetic polymers like poly(dimethylsiloxane), synthetic rubber, and natural spider silk is fabricated. With various ions, the hydrogel's various mechanical properties are continuously and reversibly in situ modulated over a large window: tensile strength from 50 ± 9 kPa to 15 ± 1 MPa, toughness from 0.0167 ± 0.003 to 150 ± 20 MJ m-3 , elongation from 300 ± 100% to 2100 ± 300%, and modulus from 24 ± 2 to 2500 ± 140 kPa. Importantly, the ions serve as gelation triggers and property modulators only, not necessarily required to remain in the gel, maintaining the high biocompatibility of PVA without excess ions. This strategy, enabling high mechanical performance and broad dynamic tunability, presents a universal platform for broad applications from biomedicine to wearable electronics.


Asunto(s)
Fenómenos Mecánicos , Alcohol Polivinílico , Propiedades de Superficie
13.
Sci Adv ; 6(47)2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33208374

RESUMEN

Stimuli-responsive hydrogels have large deformability but-when applied as actuators, smart switch, and artificial muscles-suffer from low work density due to low deliverable forces (~2 kPa) and speed through the osmotic pressure-driven actuation. Inspired by the energy conversion mechanism of many creatures during jumping, we designed an elastic-driven strong contractile hydrogel through storing and releasing elastic potential energy in polymer network. It can generate high contractile force (40 kPa) rapidly at ultrahigh work density (15.3 kJ/m3), outperforming current hydrogels (~0.01 kJ/m3) and even biological muscles (~8 kJ/m3). This demonstrated elastic energy storing and releasing method endows hydrogels with elasticity-plasticity switchability, multi-stable deformability in fully reversible and programmable manners, and anisotropic or isotropic deformation. With the high power density and programmability via this customizable modular design, these hydrogels demonstrated potential for broad applications in artificial muscles, contractile wound dressing, and high-power actuators.

14.
Sci Robot ; 4(33)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-33137784

RESUMEN

Oscillations are widely found in living organisms to generate propulsion-based locomotion often driven by constant ambient conditions, such as phototactic movements. Such environment-powered and environment-directed locomotions may advance fully autonomous remotely steered robots. However, most man-made oscillations require nonconstant energy input and cannot perform environment-dictated movement. Here, we report a self-sustained soft oscillator that exhibits perpetual and untethered locomotion as a phototactic soft swimming robot, remotely fueled and steered by constant visible light. This particular out-of-equilibrium actuation arises from a self-shadowing-enabled negative feedback loop inherent in the dynamic light-material interactions, promoted by the fast and substantial volume change of the photoresponsive hydrogel. Our analytical model and governing equation unveil the oscillation mechanism and design principle with key parameters identified to tune the dynamics. On this autonomous oscillator platform, we establish a broadly applicable principle for converting a continuous input into a discontinuous output. The modular design can be customized to accommodate various forms of input energy and to generate diverse oscillatory behaviors. The hydrogel oscillator showcases agile life-like omnidirectional motion in the entire three-dimensional space with near-infinite degrees of freedom. The large force generated by the powerful and long-lasting oscillation can sufficiently overcome water damping and effectively self-propel away from a light source. Such a hydrogel oscillator-based all-soft swimming robot, named OsciBot, demonstrated high-speed and controllable phototactic locomotion. This autonomous robot is battery free, deployable, scalable, and integratable. Artificial phototaxis opens broad opportunities in maneuverable marine automated systems, miniaturized transportation, and solar sails.

15.
ACS Appl Mater Interfaces ; 11(50): 47468-47475, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31741387

RESUMEN

Heterogeneous growth in a myriad of biological systems can lead to the formation of distinct morphologies during the maturation processes of different species. We demonstrate that the distinct circumferential buckling observed in pumpkins can be reproduced by a core-shell barrel structure using four-dimensional (4D) printing, taking advantage of digital light processing (DLP)-based three-dimensional (3D) printing and stimulus-responsive hydrogels. The mechanical mismatch between the stiff core and compliant shell results in buckling instability on the surface. The initiation and development of the buckling are governed by the ratio of core/shell radius, the ratio of core/shell swelling ratios, and the mismatch between the core and shell in stiffness. Furthermore, the rigid core not only acts as a source of circumferential confinement but also sets a boundary at the poles of the entire structure. The heterogeneous structures with controllable buckling geometrically and structurally behave much like plants' fruits. This replicates the biological morphologic change and elucidates the general mechanism and dynamics of the complex instability formation of heterogeneous 3D objects.

16.
Nat Nanotechnol ; 14(11): 1048-1055, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31686005

RESUMEN

Many living organisms track light sources and halt their movement when alignment is achieved. This phenomenon, known as phototropism, occurs, for example, when plants self-orient to face the sun throughout the day. Although many artificial smart materials exhibit non-directional, nastic behaviour in response to an external stimulus, no synthetic material can intrinsically detect and accurately track the direction of the stimulus, that is, exhibit tropistic behaviour. Here we report an artificial phototropic system based on nanostructured stimuli-responsive polymers that can aim and align to the incident light direction in the three-dimensions over a broad temperature range. Such adaptive reconfiguration is realized through a built-in feedback loop rooted in the photothermal and mechanical properties of the material. This system is termed a sunflower-like biomimetic omnidirectional tracker (SunBOT). We show that an array of SunBOTs can, in principle, be used in solar vapour generation devices, as it achieves up to a 400% solar energy-harvesting enhancement over non-tropistic materials at oblique illumination angles. The principle behind our SunBOTs is universal and can be extended to many responsive materials and a broad range of stimuli.

17.
Sci Rep ; 7(1): 14897, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097694

RESUMEN

Numerous studies have reported age-dependent degradation of neuronal function in the visual cortex and have attributed this functional decline to weakened intracortical inhibition, especially GABAergic inhibition. However, whether this type of functional decline is linked to compromised GABAergic inhibition has not been fully confirmed. Here, we compared the neuronal response properties and markers of GABAergic inhibition in the primary visual cortex (V1) of young adult and senescent rats. Compared with those of young adult rats, old rats' V1 neurons exhibited significantly increased visually evoked responses and spontaneous activity, a decreased signal-to-noise ratio and reduced response selectivity for the stimulus orientation and motion direction. Additionally, the ratio of GABA-positive neurons to total cortical neurons in old rats was significantly decreased compared with that in young rats. Expression of the key GABA-synthesizing enzyme GAD67 was significantly lower in old rats than in young rats, although GAD65 expression showed a marginal difference between the two age groups. Further, expression of an important GABAA receptor subunit, GABAAR α1, was significantly attenuated in old rats relative to young ones. These results demonstrate that ageing may result in decreased GABAergic inhibition in the visual cortex and that this decrease in GABAergic inhibition accompanies neuronal function degradation.


Asunto(s)
Envejecimiento , Neuronas GABAérgicas/fisiología , Receptores de GABA-A/metabolismo , Corteza Visual/fisiología , Animales , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/ultraestructura , Glutamato Descarboxilasa/análisis , Glutamato Descarboxilasa/metabolismo , Masculino , Inhibición Neural , Orientación , Ratas , Receptores de GABA-A/análisis , Corteza Visual/citología , Corteza Visual/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA