Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 696: 149489, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38244313

RESUMEN

Lung cancer has a high incidence rate and requires more effective treatment strategies and drug options for clinical patients. EGFR is a common genetic alteration event in lung cancer that affects patient survival and drug strategy. Our study discovered aberrant aldolase A (ALDOA) expression and dysfunction in lung cancer patients with EGFR mutations. In addition to investigating relevant metabolic processes like glucose uptake, lactate production, and ATPase activity, we examined multi-omics profiles (transcriptomics, proteomics, and pull-down assays). It was observed that phosphodiesterase 3A (PDE3A) enzyme and ALDOA exhibit correlation, and furthermore, they impact M2 macrophage polarization through ß-catenin and downstream ID3. In addition to demonstrating the aforementioned mechanism of action, our experiments discovered that the PDE3 inhibitor trequinsin has a substantial impact on lung cancer cell lines with EGFR mutants. The trequinsin medication was found to decrease the M2 macrophage polarization status and several cancer phenotypes, in addition to transduction. These findings have potential prognostic and therapeutic applications for clinical patients with EGFR mutation and lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Fructosa-Bifosfato Aldolasa/genética , beta Catenina/genética , beta Catenina/metabolismo , Transducción de Señal/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Línea Celular Tumoral , Mutación , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Inhibidoras de la Diferenciación/genética
2.
Biochem Biophys Res Commun ; 720: 150066, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749193

RESUMEN

Alveolar and interstitial macrophages play crucial roles in eradicating pathogens and transformed cells in the lungs. The immune checkpoint CD47, found on normal and malignant cells, interacts with the SIRPα ligand on macrophages, inhibiting phagocytosis, antigen presentation, and promoting immune evasion. In this study, we demonstrated that CD47 is not only a transmembrane protein, but that it is also highly concentrated in extracellular vesicles from lung cancer cell lines and patient plasma. Abundant CD47 was observed in the cytoplasm of lung cancer cells, aligning with our finding that it was packed into extracellular vesicles for physiological and pathological functions. In our clinical cohort, extracellular vesicle CD47 was significantly higher in the patients with early-stage lung cancer, emphasizing innate immunity inactivation in early tumor progression. To validate our hypothesis, we established an orthotopic xenograft model mimicking lung cancer development, which showed increased serum soluble CD47 and elevated IL-10/TNF-α ratio, indicating an immune-suppressive tumor microenvironment. CD47 expression led to reduced tumor-infiltrating macrophages during progression, while there was a post-xenograft increase in tumor-associated macrophages. In conclusion, CD47 is pivotal in early lung cancer progression, with soluble CD47 emerging as a key pathological effector.


Asunto(s)
Antígeno CD47 , Progresión de la Enfermedad , Neoplasias Pulmonares , Antígeno CD47/metabolismo , Antígeno CD47/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Humanos , Animales , Línea Celular Tumoral , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Ratones , Escape del Tumor , Evasión Inmune , Microambiente Tumoral/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Femenino , Estadificación de Neoplasias
3.
J Biomed Sci ; 31(1): 30, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500170

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS: A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-ß)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS: The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-ß-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION: This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , Hiperoxia , MicroARNs , Ratas , Animales , Células Cultivadas , Hiperoxia/metabolismo , Inflamación , MicroARNs/genética , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Vesículas Extracelulares/fisiología , Fibrosis , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/metabolismo
4.
Cell Commun Signal ; 21(1): 184, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488534

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a highly prevalent cancer type with limited targeted therapies available and 5-year survival rate, particularly for late-stage patients. There have been numerous attempts to repurpose drugs to tackle this problem. It has been reported that autophagy inducers could augment the effect of certain chemotherapeutic agents by enhancing immunogenic cell death (ICD). METHODS: In this study, we employed bioinformatics tools to identify thioridazine (THD), an antipsychotic drug, and found that it could induce autophagy and ICD in CRC. Then in vitro and in vivo experiments were performed to further elucidate the molecular mechanism of THD in CRC. RESULTS: THD was found to induce endoplasmic reticulum (ER) stress in CRC cells by activating the eIF2α/ATF4/CHOP axis and facilitating the accumulation of secretory autophagosomes, leading to ICD. In addition, THD showed a remarkable ICD-activating effect when combined with oxaliplatin (OXA) to prevent tumor progression in the mouse model. CONCLUSIONS: Together, our findings suggest that the repurposed function of THD in inhibiting CRC involves the upregulation of autophagosomes and ER stress signals, promoting the release of ICD markers, and providing a potential candidate to enhance the clinical outcome for CRC treatment. Video Abstract.


Asunto(s)
Neoplasias Colorrectales , Tioridazina , Animales , Ratones , Tioridazina/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Reposicionamiento de Medicamentos , Muerte Celular Inmunogénica , Autofagia , Neoplasias Colorrectales/tratamiento farmacológico , Apoptosis , Línea Celular Tumoral
5.
Clin Exp Rheumatol ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37706287

RESUMEN

Inflammation-induced bone destruction is the main cause of progressive joint damage in rheumatoid arthritis (RA) and osteoarthritis (OA). In addition, depending on the tissue microenvironment stimulators, the synovium transforms into a hyperplastic invasive tissue. The synovium includes two specific subsets of fibroblasts surrounding the joints: lining and sublining synovial fibroblasts (SFs). These SFs grow and interact with immune cells invading the bone and cartilage; specifically, SFs, which are the major mesenchymal cells in the joints, develop an aggressive phenotype, thereby producing cytokines and proteases involved in arthritis pathogeneses. Transcriptomic differences in the heterogeneity of SFs reflect the joint-specific origins of the SFs interacting with immune cells. To understand the subsets of SFs that lead to joint damage in arthritis, clarifying the distinct phenotypes and properties of SFs and understanding how they influence bone cells, such as osteoclasts and chondrocytes, is crucial. This review provides an overview of the advancements in the understanding of SF subsets and features, which may aid in identifying newer therapeutic targets.

6.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569525

RESUMEN

The immune checkpoint inhibitor/tyrosine kinase inhibitor (ICI/TKI) combination treatment is currently the first-line treatment for metastatic renal cell carcinoma (mRCC). However, its efficacy beyond the third-line setting is expected to be relatively poor, and high-grade toxicities can develop by prior exposure to multiple drugs, resulting in a relatively poor performance in patients. Determining the best treatment regimen and sequence remains difficult and requires further investigation in patients with mRCC. In this study, two cases of mRCC, who failed several lines of TKI and nivolumab but exhibited a good anticancer effect after rechallenging with axitinib, are described. Both patients had a faster time to best response and better progression-free survival (PFS) than during previous treatments. Moreover, the axitinib dose could be reduced to 2.5 mg daily when used in combination with nivolumab while continuing to exert an impressive anticancer effect. To determine the cytotoxic effect, we performed a lymphocyte activation test and found that the level of granzyme B released by cytotoxic T lymphocytes and natural killer cells was higher when axitinib was combined with nivolumab. To evaluate this result, a bioinformatics approach was used to analyze the PRISM database. In conclusion, based on the results of a lymphocyte activation test and PD-1 expression, our findings indicate that sequential therapy with axitinib rechallenge after nivolumab resistance is reasonable for the treatment of mRCC.

7.
J Cell Mol Med ; 26(15): 4305-4321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35794816

RESUMEN

Lung cancer is the leading cause of cancer-associated death, with a global 5-year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug-resistance, and is a potential target for drug development. In this study, we found that in non-small cell lung cancer (NSCLC), BMI1 and MCL1 play crucial roles of cancer stemness including invasion, chemo-resistance and tumour initiation. JNK signalling serves as a link between oncogenic pathway or genotoxicity to cancer stemness. The activation of JNK, either by mutant EGFR or chemotherapy agent, stabilized BMI1 and MCL1 proteins through suppressing the expression of E3-ubiquitin ligase HUWE1. In lung cancer patient samples, high level of BMI1 is correlated with poor survival, and the expression of BMI1 is positively correlated with MCL1. A novel small-molecule, BI-44, was developed, which effectively suppressed BMI1/MCL1 expressions and inhibited tumour formation and progression in preclinical models. Targeting cancer stemness mediated by BMI1/MCL1 with BI-44 provides the basis for a new therapeutic approach in NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Células Madre Neoplásicas/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
J Biomed Sci ; 29(1): 103, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36457117

RESUMEN

BACKGROUND: Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1 (TIMP1), an inflammatory cytokine, under serum-depleted conditions which leads to suppression of lung cancer cell metastasis has been reported. Starvation is also a stimulus of autophagic activity. Herein, we reveal that starvation activates Rab37 and induces autophagy. METHODS: We used an overexpression/knockdown system to determine the relationship between autophagy and Rab37 in vitro and in vivo. The autophagy activity was detected by immunoblotting, transmission electron microscope, autophagosome purification, and immunofluorescence under the confocal microscope. Lung-to-lung metastasis mouse model was used to clarify the role of autophagy and Rab37 in lung cancer. Clinical lung cancer patient specimens and an online big database were analyzed. RESULTS: Initially, we demonstrated that active-form Rab37 increased LC3-II protein level (the marker of autophagosome) and TIMP1 secretion. Accordingly, silencing of Rab37 gene expression alleviated Rab37 and LC3-II levels as well as TIMP1 secretion, and induction of autophagy could not increase TIMP1 exocytosis under such conditions. Moreover, silencing the Atg5 or Atg7 gene of lung cancer cells harboring active-mutant Rab37 (Q89L) led to decreased autophagy activity and TIMP1 secretion. In the lung-to-lung metastasis mouse model, increased TIMP1 expression accompanied by amiodarone-induced autophagy led to decreased tumor nodules and cancer cell metastasis. These phenomena were reversed by silencing the Atg5 or Atg7 gene. Notably, increasing autophagy activity alone showed no effect on TIMP1 secretion under either Rab37 or Sec22b silencing conditions. We further detected colocalization of LC3 with either Rab37 or TIMP1, identified Rab37 and Sec22b proteins in the purified autophagosomes of the lung cancer cells harboring the active-form Rab37 gene, and confirmed that these proteins are involved in the secretion of TIMP1. We reveal that autophagic activity was significantly lower in the tumors compared to the non-tumor parts and was associated with the overall lung cancer patient survival rate. CONCLUSIONS: We are the first to report that autophagy plays a promoting role in TIMP1 secretion and metastasis in a Rab37-dependent manner in lung cancer cells and the lung-to-lung mouse model.


Asunto(s)
Neoplasias Pulmonares , Inhibidor Tisular de Metaloproteinasa-1 , Proteínas de Unión al GTP rab , Animales , Ratones , Autofagosomas , Autofagia/genética , Modelos Animales de Enfermedad , Exocitosis , Neoplasias Pulmonares/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Proteínas de Unión al GTP rab/genética
9.
Cell Commun Signal ; 20(1): 200, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575468

RESUMEN

BACKGROUND: Despite advances in treatment, patients with refractory colorectal cancer (CRC) still have poor long-term survival, so there is a need for more effective therapeutic options. METHODS: To evaluate the HDAC8 inhibition efficacy as a CRC treatment, we examined the effects of various HDAC8 inhibitors (HDAC8i), including BMX (NBM-T-L-BMX-OS01) in combination with temozolomide (TMZ) or other standard CRC drugs on p53 mutated HT29 cells, as well as wild-type p53 HCT116 and RKO cells. RESULTS: We showed that HDAC8i with TMZ cotreatment resulted in HT29 arrest in the S and G2/M phase, whereas HCT116 and RKO arrest in the G0/G1 phase was accompanied by high sub-G1. Subsequently, this combination approach upregulated p53-mediated MGMT inhibition, leading to apoptosis. Furthermore, we observed the cotreatment also enabled triggering of cell senescence and decreased expression of stem cell biomarkers. Mechanistically, we found down-expression levels of ß-catenin, cyclin D1 and c-Myc via GSK3ß/ß-catenin signaling. Intriguingly, autophagy also contributes to cell death under the opposite status of ß-catenin/p62 axis, suggesting that there exists a negative feedback regulation between Wnt/ß-catenin and autophagy. Consistently, the Gene Set Enrichment Analysis (GSEA) indicated both apoptotic and autophagy biomarkers in HT29 and RKO were upregulated after treating with BMX. CONCLUSIONS: BMX may act as a HDAC8 eraser and in combination with reframed-TMZ generates a remarkable synergic effect, providing a novel therapeutic target for various CRCs. Video Abstract.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Inhibidores de Histona Desacetilasas , Temozolomida , Humanos , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Temozolomida/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt , Inhibidores de Histona Desacetilasas/farmacología , Células HT29
10.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34830455

RESUMEN

Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by the presence of the BCR-ABL oncogene. Therapeutic regimens with tyrosine kinase inhibitors (TKIs) specifically targeting BCR-ABL have greatly improved overall survival of CML. However, drug intolerance and related toxicity remain. Combined therapy is effective in reducing drug magnitude while increasing therapeutic efficacy and, thus, lowers undesired adverse side effects. The p38 MAPK activity is critically linked to the pathogenesis of a number of diseases including hematopoietic diseases; however, the role of each isozyme in CML and TKI-mediated effects is still elusive. In this study, we used specific gene knockdown to clearly demonstrate that the deficiency of p38α greatly enhanced the therapeutic efficacy in growth suppression and cytotoxicity of TKIs, first-generation imatinib, and second generation dasatinib by approximately 2.5-3.0-fold in BCR-ABL-positive CML-derived leukemia K562 and KMB5 cells. Knockdown of p38ß, which displays the most sequence similarity to p38α, exerted distinct and opposite effects on the TKI-mediated therapeutic efficacy. These results show the importance of isotype-specific intervention in enhancing the therapeutic efficacy of TKI. A highly specific p38α inhibitor, TAK715, also significantly enhanced the imatinib- and dasatinib-mediated therapeutic efficacy, supporting the feasibility of p38α deficiency in future clinic application. Taken together, our results demonstrated that p38α is a promising target for combined therapy with BCR-ABL-targeting tyrosine kinase inhibitors for future application to increase therapeutic efficacy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Proteínas de Fusión bcr-abl/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Proteína Quinasa 14 Activada por Mitógenos/genética , Terapia Combinada , Dasatinib/farmacología , Resistencia a Antineoplásicos/genética , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Técnicas de Silenciamiento del Gen , Terapia Genética , Humanos , Mesilato de Imatinib/farmacología , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/deficiencia , Inhibidores de Proteínas Quinasas/farmacología
11.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072831

RESUMEN

Although histone deacetylase 8 (HDAC8) plays a role in glioblastoma multiforme (GBM), whether its inhibition facilitates the treatment of temozolomide (TMZ)-resistant GBM (GBM-R) remains unclear. By assessing the gene expression profiles from short hairpin RNA of HDAC8 in the new version of Connectivity Map (CLUE) and cells treated by NBM-BMX (BMX)-, an HDAC8 inhibitor, data analysis reveals that the Wnt signaling pathway and apoptosis might be the underlying mechanisms in BMX-elicited treatment. This study evaluated the efficacy of cotreatment with BMX and TMZ in GBM-R cells. We observed that cotreatment with BMX and TMZ could overcome resistance in GBM-R cells and inhibit cell viability, markedly inhibit cell proliferation, and then induce cell cycle arrest and apoptosis. In addition, the expression level of ß-catenin was reversed by proteasome inhibitor via the ß-catenin/ GSK3ß signaling pathway to reduce the expression level of c-Myc and cyclin D1 in GBM-R cells. BMX and TMZ cotreatment also upregulated WT-p53 mediated MGMT inhibition, thereby triggering the activation of caspase-3 and eventually leading to apoptosis in GBM-R cells. Moreover, BMX and TMZ attenuated the expression of CD133, CD44, and SOX2 in GBM-R cells. In conclusion, BMX overcomes TMZ resistance by enhancing TMZ-mediated cytotoxic effect by downregulating the ß-catenin/c-Myc/SOX2 signaling pathway and upregulating WT-p53 mediated MGMT inhibition. These findings indicate a promising drug combination for precision personal treating of TMZ-resistant WT-p53 GBM cells.


Asunto(s)
Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/tratamiento farmacológico , Histona Desacetilasas/genética , Proteínas Represoras/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , beta Catenina/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Proteínas Represoras/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Temozolomida/efectos adversos , Temozolomida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Invest New Drugs ; 38(2): 264-273, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30993588

RESUMEN

Background Thiostrepton, a natural antibiotic, has recently been shown to be a potential anticancer drug for certain cancers, but its study in nasopharyngeal carcinoma (NPC) is still limited. The aims of this study were to investigate the anticancer effect of thiostrepton on NPC cells and to explore its underlying mechanism. Methods The effects of thiostrepton on the proliferation, migration, and invasion of NPC cells were investigated by a WST-1 assay, wound healing assay, and cell invasion assay, respectively. Microarrays were conducted and further analyzed by Ingenuity Pathways Analysis (IPA) to determine the molecular mechanism by which thiostrepton affects NPC cells. Results Our results showed that thiostrepton reduced NPC cell viability in a dose-dependent manner. Thiostrepton inhibited the migration and invasion of NPC cells in wound healing and cell invasion assays. The microarray data analyzed by IPA indicated the top 5 ingenuity canonical pathways, which were unfolded protein response, NRF2-mediated oxidative stress response, retinoate biosynthesis I, choline biosynthesis III, and pancreatic adenocarcinoma signaling. Conclusion Thiostrepton effectively suppressed NPC cell proliferation, migration, and invasion, likely by several mechanisms. Thiostrepton may be a potential therapeutic agent for treating NPC in the future.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Tioestreptona/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética
13.
J Cell Mol Med ; 23(12): 8184-8195, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31638335

RESUMEN

Cancer stem cells (CSCs) play an important role in cancer treatment resistance and disease progression. Identifying an effective anti-CSC agent may lead to improved disease control. We used CSC-associated gene signatures to identify drug candidates that may inhibit CSC growth by reversing the CSC gene signature. Thiostrepton, a natural cyclic oligopeptide antibiotic, was the top-ranked candidate. In non-small-cell lung cancer (NSCLC) cells, thiostrepton inhibited CSC growth in vitro and reduced protein expression of cancer stemness markers, including CD133, Nanog and Oct4A. In addition, metastasis-associated Src tyrosine kinase signalling, cell migration and epithelial-to-mesenchymal transition (EMT) were all inhibited by thiostrepton. Mechanistically, thiostrepton treatment led to elevated levels of tumour suppressor miR-98. Thiostrepton combined with gemcitabine synergistically suppressed NSCLC cell growth and induced apoptosis. The inhibition of NSCLC tumours and CSC growth by thiostrepton was also demonstrated in vivo. Our findings indicate that thiostrepton, an established drug identified in silico, is an inhibitor of CSC growth and a potential enhancer of chemotherapy in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/genética , Células Madre Neoplásicas/metabolismo , Tioestreptona/farmacología , Células A549 , Animales , Antibacterianos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Simulación por Computador , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica/métodos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
14.
Int J Mol Sci ; 20(3)2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30678307

RESUMEN

Thioridazine (THD) is a common phenothiazine antipsychotic drug reported to suppress growth in several types of cancer cells. We previously showed that THD acts as an antiglioblastoma and anticancer stem-like cell agent. However, the signaling pathway underlying autophagy and apoptosis induction remains unclear. THD treatment significantly induced autophagy with upregulated AMPK activity and engendered cell death with increased sub-G1 in glioblastoma multiform (GBM) cell lines. Notably, through whole gene expression screening with THD treatment, frizzled (Fzd) proteins, a family of G-protein-coupled receptors, were found, suggesting the participation of Wnt/ß-catenin signaling. After THD treatment, Fzd-1 and GSK3ß-S9 phosphorylation (inactivated form) was reduced to promote ß-catenin degradation, which attenuated P62 inhibition. The autophagy marker LC3-II markedly increased when P62 was released from ß-catenin inhibition. Additionally, the P62-dependent caspase-8 activation that induced P53-independent apoptosis was confirmed by inhibiting T-cell factor/ß-catenin and autophagy flux. Moreover, treatment with THD combined with temozolomide (TMZ) engendered increased LC3-II expression and caspase-3 activity, indicating promising drug synergism. In conclusion, THD induces autophagy in GBM cells by not only upregulating AMPK activity, but also enhancing P62-mediated autophagy and apoptosis through Wnt/ß-catenin signaling. Therefore, THD is a potential alternative therapeutic agent for drug repositioning in GBM.


Asunto(s)
Autofagia/efectos de los fármacos , Cateninas/metabolismo , Glioma/metabolismo , Tioridazina/farmacología , Apoptosis/efectos de los fármacos , Beclina-1/metabolismo , Western Blotting , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
15.
Int J Mol Sci ; 20(10)2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31137784

RESUMEN

BACKGROUND AND AIMS: Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, which occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension. Activated hepatic perivascular stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines, such as TGF-ß1. The inhibition of TGF-ß1 function or synthesis is a major target for the development of antifibrotic therapies. Our previous study showed that the water and ethanol extracts of Graptopetalum paraguayense (GP), a Chinese herbal medicine, can prevent dimethylnitrosamine (DMN)-induced hepatic inflammation and fibrosis in rats. METHODS: We used rat hepatic stellate HSC-T6 cells and a diethylnitrosamine (DEN)-induced rat liver injury model to test the potential mechanism of GP extracts and its fraction, HH-F3. RESULTS: We demonstrated that GP extracts and HH-F3 downregulated the expression levels of extracellular matrix (ECM) proteins and inhibited the proliferation and migration via suppression of the TGF-ß1 pathway in rat hepatic stellate HSC-T6 cells. Moreover, the HH-F3 fraction decreased hepatic collagen content and reduced plasma AST, ALT, and γ-GT activities in a DEN-induced rat liver injury model, suggesting that GP/HH-F3 has hepatoprotective effects against DEN-induced liver fibrosis. CONCLUSION: These findings indicate that GP/HH-F3 may be a potential therapeutic agent for the treatment of liver fibrosis. The inhibition of TGF-ß-mediated fibrogenesis may be a central mechanism by which GP/HH-F3 protects the liver from injury.


Asunto(s)
Crassulaceae/química , Cirrosis Hepática/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular , Colágeno/genética , Colágeno/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Extractos Vegetales/farmacología , Ratas , Ratas Wistar , Transducción de Señal , Factor de Crecimiento Transformador beta/genética
16.
PLoS Comput Biol ; 13(7): e1005618, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28686599

RESUMEN

The liver is a vital organ involving in various major metabolic functions in human body. MicroRNA-122 (miR-122) plays an important role in the regulation of liver metabolism, but its intrinsic physiological functions require further clarification. This study integrated the genome-scale metabolic model of hepatocytes and mouse experimental data with germline deletion of Mir122a (Mir122a-/-) to infer Warburg-like effects. Elevated expression of MiR-122a target genes in Mir122a-/-mice, especially those encoding for metabolic enzymes, was applied to analyze the flux distributions of the genome-scale metabolic model in normal and deficient states. By definition of the similarity ratio, we compared the flux fold change of the genome-scale metabolic model computational results and metabolomic profiling data measured through a liquid-chromatography with mass spectrometer, respectively, for hepatocytes of 2-month-old mice in normal and deficient states. The Ddc gene demonstrated the highest similarity ratio of 95% to the biological hypothesis of the Warburg effect, and similarity of 75% to the experimental observation. We also used 2, 6, and 11 months of mir-122 knockout mice liver cell to examined the expression pattern of DDC in the knockout mice livers to show upregulated profiles of DDC from the data. Furthermore, through a bioinformatics (LINCS program) prediction, BTK inhibitors and withaferin A could downregulate DDC expression, suggesting that such drugs could potentially alter the early events of metabolomics of liver cancer cells.


Asunto(s)
Hepatocitos/metabolismo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Análisis de Flujos Metabólicos/métodos , MicroARNs/genética , Animales , Glucosa/metabolismo , Humanos , Neoplasias Hepáticas/genética , Metabolómica , Ratones , Ratones Noqueados , MicroARNs/metabolismo
17.
J Immunol ; 195(8): 3912-21, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26371257

RESUMEN

Activation of TLR7-9 has been linked to the pathogenesis of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and psoriasis. Thus, therapeutic applications of antagonists of these TLRs for such disorders are being investigated. Bortezomib (Velcade) is a proteasome inhibitor known to suppress activation of these TLRs. To identify novel TLR7-9 inhibitors, we searched the Gene Expression Omnibus database for gene expression profiles of bortezomib-treated cells. These profiles were then used to screen the Connectivity Map database for chemical compounds with similar functions as bortezomib. A natural antibiotic, thiostrepton, was identified for study. Similar to bortezomib, thiostrepton effectively inhibits TLR7-9 activation in cell-based assays and in dendritic cells. In contrast to bortezomib, thiostrepton does not inhibit NF-κB activation induced by TNF-α, IL-1, and other TLRs, and it is less cytotoxic to dendritic cells. Thiostrepton inhibits TLR9 localization in endosomes for activation via two mechanisms, which distinguish it from currently used TLR7-9 inhibitors. One mechanism is similar to the proteasome inhibitory function of bortezomib, whereas the other is through inhibition of endosomal acidification. Accordingly, in different animal models, thiostrepton attenuated LL37- and imiquimod-induced psoriasis-like inflammation. These results indicated that thiostrepton is a novel TLR7-9 inhibitor, and compared with bortezomib, its inhibitory effect is more specific to these TLRs, suggesting the potential therapeutic applications of thiostrepton on immunologic disorders elicited by inappropriate activation of TLR7-9.


Asunto(s)
Glicoproteínas de Membrana/antagonistas & inhibidores , Psoriasis/tratamiento farmacológico , Tioestreptona/farmacología , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 9/antagonistas & inhibidores , Animales , Línea Celular , Humanos , Inflamación/inmunología , Inflamación/patología , Interleucina-1/inmunología , Glicoproteínas de Membrana/inmunología , Ratones , Psoriasis/inmunología , Psoriasis/patología , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 9/inmunología , Factor de Necrosis Tumoral alfa/inmunología
18.
Pacing Clin Electrophysiol ; 40(12): 1446-1453, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28975638

RESUMEN

BACKGROUND: Alcohol consumption is known to increase the risk of atrial fibrillation (AF). Whether the genotypes of alcohol-metabolizing genes (alcohol dehydrogenase [ADH1B]) are associated with the risk of AF recurrence after catheter ablation remains unclear. METHODS AND RESULTS: The ADH1B genotypes of 281 patients who received catheter ablation for AF were examined. We followed this group of patients to monitor their AF recurrence. Alcohol consumption levels of this cohort were evaluated before and after catheter ablation. There was no difference in the underlying diseases presented by the patients with different ADH1B genotypes. Regardless of the ADH1B genotypes, the amount of alcohol consumption was the only factor associated with left atrial dilatation. The ADH1B*2 alleles (hazard ratio: ADH1B*1/*2 vs *1/*1: 2.64; ADH1B*2/*2 vs *1/*1: 1.80, P = 0.02) and the levels of alcohol consumption were independently associated with AF recurrence in the patients with paroxysmal AF after catheter ablation. ADH1B polymorphisms were not associated with AF recurrence in the patients with nonparoxysmal AF. We also found that the association of increased AF recurrence with alcohol consumption and the ADH1B genotypes cannot be explained by mechanisms of systemic inflammation. CONCLUSIONS: ADH1B*2/*2 genotype and amount of alcohol consumption increase the risk of AF recurrence after catheter ablation.


Asunto(s)
Alcohol Deshidrogenasa/genética , Fibrilación Atrial/genética , Fibrilación Atrial/cirugía , Ablación por Catéter , Consumo de Bebidas Alcohólicas , Fibrilación Atrial/enzimología , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Recurrencia , Resultado del Tratamiento
19.
BMC Bioinformatics ; 17 Suppl 1: 2, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26817825

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the leading causes of death globally, and research into NSCLC has been accumulating steadily over several years. Drug repositioning is the current trend in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development process of drugs, as well as reducing side effects. RESULTS: This work integrates two approaches--machine learning algorithms and topological parameter-based classification--to develop a novel pipeline of drug repositioning to analyze four lung cancer microarray datasets, enriched biological processes, potential therapeutic drugs and targeted genes for NSCLC treatments. A total of 7 (8) and 11 (12) promising drugs (targeted genes) were discovered for treating early- and late-stage NSCLC, respectively. The effectiveness of these drugs is supported by the literature, experimentally determined in-vitro IC50 and clinical trials. This work provides better drug prediction accuracy than competitive research according to IC50 measurements. CONCLUSIONS: With the novel pipeline of drug repositioning, the discovery of enriched pathways and potential drugs related to NSCLC can provide insight into the key regulators of tumorigenesis and the treatment of NSCLC. Based on the verified effectiveness of the targeted drugs predicted by this pipeline, we suggest that our drug-finding pipeline is effective for repositioning drugs.


Asunto(s)
Algoritmos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Reposicionamiento de Medicamentos , Aprendizaje Automático , Modelos Teóricos , Proteínas de Neoplasias/genética , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Análisis por Micromatrices , Transducción de Señal
20.
Proc Natl Acad Sci U S A ; 110(19): E1779-87, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610398

RESUMEN

The overexpression of Aurora kinases in multiple tumors makes these kinases appealing targets for the development of anticancer therapies. This study identified two small molecules with a furanopyrimidine core, IBPR001 and IBPR002, that target Aurora kinases and induce a DFG conformation change at the ATP site of Aurora A. Our results demonstrate the high potency of the IBPR compounds in reducing tumorigenesis in a colorectal cancer xenograft model in athymic nude mice. Human hepatoma up-regulated protein (HURP) is a substrate of Aurora kinase A, which plays a crucial role in the stabilization of kinetochore fibers. This study used the IBPR compounds as well as MLN8237, a proven Aurora A inhibitor, as chemical probes to investigate the molecular role of HURP in mitotic spindle formation. These compounds effectively eliminated HURP phosphorylation, thereby revealing the coexistence and continuous cycling of HURP between unphosphorylated and phosphorylated forms that are associated, respectively, with microtubules emanating from centrosomes and kinetochores. Furthermore, these compounds demonstrate a spatial hierarchical preference for HURP in the attachment of microtubules extending from the mother to the daughter centrosome. The finding of inequality in the centrosomal microtubules revealed by these small molecules provides a versatile tool for the discovery of new cell-division molecules for the development of antitumor drugs.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/ultraestructura , Inhibidores Enzimáticos/farmacología , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Aurora Quinasa A , Aurora Quinasas , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Cristalografía por Rayos X , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Desnudos , Mitosis , Trasplante de Neoplasias , Fosforilación , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA