RESUMEN
The Dempster-Shafer theory (DST) is an information fusion framework and widely used in many fields. However, the uncertainty measure of a basic probability assignment (BPA) is still an open issue in DST. There are many methods to quantify the uncertainty of BPAs. However, the existing methods have some limitations. In this paper, a new total uncertainty measure from a perspective of maximum entropy requirement is proposed. The proposed method can measure both dissonance and non-specificity in BPA, which includes two components. The first component is consistent with Yager's dissonance measure. The second component is the non-specificity measurement with different functions. We also prove the desirable properties of the proposed method. Besides, numerical examples and applications are provided to illustrate the effectiveness of the proposed total uncertainty measure.
RESUMEN
Dempster-Shafer theory (DST), which is widely used in information fusion, can process uncertain information without prior information; however, when the evidence to combine is highly conflicting, it may lead to counter-intuitive results. Moreover, the existing methods are not strong enough to process real-time and online conflicting evidence. In order to solve the above problems, a novel information fusion method is proposed in this paper. The proposed method combines the uncertainty of evidence and reinforcement learning (RL). Specifically, we consider two uncertainty degrees: the uncertainty of the original basic probability assignment (BPA) and the uncertainty of its negation. Then, Deng entropy is used to measure the uncertainty of BPAs. Two uncertainty degrees are considered as the condition of measuring information quality. Then, the adaptive conflict processing is performed by RL and the combination two uncertainty degrees. The next step is to compute Dempster's combination rule (DCR) to achieve multi-sensor information fusion. Finally, a decision scheme based on correlation coefficient is used to make the decision. The proposed method not only realizes adaptive conflict evidence management, but also improves the accuracy of multi-sensor information fusion and reduces information loss. Numerical examples verify the effectiveness of the proposed method.