Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(26): 11822-11830, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35679487

RESUMEN

Multi-wavelength lasers, especially the triple-wavelength laser around 1060 nm, could be produced by the 4F3/2 → 4I11/2 transition of Nd3+ and present numerous challenges and opportunities in the field of optoelectronics. The Nd3+-doped high-temperature phase of LaBSiO5 (ß-LBSO) is an ideal crystal to produce triple-wavelength lasers; however, the crystal growth is challenging because of the phase transition from ß-LBSO to low-temperature phase (α-LBSO) at 162 °C. This phase transition is successfully suppressed when the doping content of Nd3+ is larger than 6.3 at. %, and the Nd3+-doped ß-LBSO is stable at room temperature. The local disorder of BO4 tetrahedra due to Nd3+ doping is essential to the stabilization of ß-LBSO. For the first time, the ß-LBSO:8%Nd3+ crystal with a dimension of 1.8 × 1.8 × 1.8 cm3 is obtained through the top-seeded solution method. The crystal shows strong optical absorption in the range of 785-815 nm, matching well with the commercial laser diode pumping source. The optical emission of 4F3/2 → 4I11/2 splits into four peaks with the highest optical emission cross section of 2.14 × 10-20 cm2 at 1068 nm. The continuous-wave triple-wavelength generation of coherent light at 1047, 1071, and 1092 nm is achieved with the highest output power of 235 mW and efficiency of 12.1%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA