Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770692

RESUMEN

A rapid and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the quantification of Paclitaxel (PTX), 6α-hydroxypaclitaxel (6α-OHP), and p-3'-hydroxypaclitaxel (3'-OHP) in mouse plasma and tumor tissue. The analytes were separated using a C18 column (50 × 2.1 mm, 1.8 µm), and a triple-quadrupole mass spectrometry device equipped with an electrospray ionization (ESI) source was applied for their detection. PTX, 6α-OHP, and 3'-OHP were extracted from the biological samples with the solid-phase extraction cartridge. The method was fully validated according to the FDA's guidance. The method was linear over the concentration ranges of 0.5~1000.0 ng/mL for PTX and 0.25~500.0 ng/mL for 6α-OHP and 3'-OHP. The precision, accuracy, extraction recovery, and matrix effects were within acceptable limits. The present method was successfully applied to the study of the pharmacokinetics and distribution of PTX, 6α-OHP, and 3'-OHP in the tumors of post xenograft nude mice intravenously injected with PTX solution.


Asunto(s)
Neoplasias , Paclitaxel , Humanos , Ratones , Animales , Paclitaxel/química , Cromatografía Líquida de Alta Presión/métodos , Ratones Desnudos , Espectrometría de Masas en Tándem/métodos , Xenoinjertos , Neoplasias/tratamiento farmacológico , Reproducibilidad de los Resultados
2.
Nanoscale ; 15(15): 6920-6933, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36976638

RESUMEN

As a kind of excellent multifunctional metal oxide semiconductor, KxNa1-xNbO3 (KNN) has been widely applied in a variety of fields such as photocatalysis and energy harvesting due to its excellent piezoelectric, dielectric and photovoltaic properties in recent decades. In this report, octahedron-shaped K0.4Na0.6NbO3 (KNN-6) microstructures assembled by cubic nanoparticles with {010} exposed facets were synthesized via a one-pot hydrothermal reaction. Due to the accumulation of electrons on the exposed facets, which was conducive to the separation of photo-generated electron-hole pairs, the microstructures could achieve a highly efficient photocatalytic performance for wastewater degradation. In addition, owing to the piezoelectric effect of KNN crystals, the degradation efficiency could be further enhanced by introducing ultrasonic vibration. Using methylene blue (MB) as the organic dye to evaluate their wastewater degradation efficiency, the KNN microstructures achieved their best catalytic performance when the atomic ratio of KOH to NaOH in the reactant was set at 4 : 6 (KNN-6). Under the synergistic effect of light irradiation and ultrasonic vibration, MB could almost be completely (99%) degraded within 40 minutes by KNN-6 microstructures, which was several times more efficient than that of pure NaNbO3 or KNbO3 in previous reports. This work demonstrated that the K0.4Na0.6NbO3 (KNN-6) microstructure could be a prominent candidate for wastewater purification. The formation mechanism of KNN crystals and the role of the piezoelectric effect in the photocatalytic process were also discussed.

3.
Polymers (Basel) ; 14(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35567089

RESUMEN

The genus Sphingomonas was established by Yabuuchi et al. in 1990, and has attracted much attention in recent years due to its unique ability to degrade environmental pollutants. Some Sphingomonas species can secrete high-molecular-weight extracellular polymers called sphingans, most of which are acidic heteropolysaccharides. Typical sphingans include welan gum, gellan gum, and diutan gum. Most sphingans have a typical, conserved main chain structure, and differences of side chain groups lead to different rheological characteristics, such as shear thinning, temperature or salt resistance, and viscoelasticity. In petroleum production applications, sphingans, and their structurally modified derivatives can replace partially hydrolyzed polyacrylamide (HPAM) for enhanced oil recovery (EOR) in high-temperature and high-salt reservoirs, while also being able to replace guar gum as a fracturing fluid thickener. This paper focuses on the applications of sphingans and their derivatives in EOR.

4.
Polymers (Basel) ; 15(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36616408

RESUMEN

The characterization and flocculation mechanism of a biopolymer flocculant produced by Sphingomonas sp. HL-1, were investigated. The bio-flocculant HL1 was identified as an acidic polysaccharide, mainly composed of glucose, and also contained a small amount of mannose, galacturonic acid and guluronic acid. The flocculating activity of the purified HL1 polysaccharide could be activated by trivalent cations, and its flocculation mechanism was mainly charge neutralization and bridging. The working concentration of fermentation broth HL1 in a kaolin suspension was only 1/10,000 (v/v), in which the polysaccharide concentration was about 2 mg/L. The bio-flocculant HL1 maintained high efficiency at a wide range of pH (pH 3-10). It also exhibited good flocculating activity at a temperature range of 20-40 °C; it could even tolerate high salinity and kept activity at a mineralization degree of 50,000 mg/L. Therefore, the bio-flocculant HL1 has a good application prospect in the treatment of wastewater over a broad pH range and in high salinity.

5.
J Cancer Res Clin Oncol ; 148(9): 2247-2260, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35430688

RESUMEN

PURPOSE: To evaluate a new radiomics strategy that incorporates intratumoral and peritumoral features extracted from lung CT images with ensemble learning for pretreatment prediction of lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). METHODS: A total of 105 patients (47 LUSC and 58 LUAD) with pretherapy CT scans were involved in this retrospective study, and were divided into training (n = 73) and testing (n = 32) cohorts. Seven categories of radiomics features involving 3078 metrics in total were extracted from the intra- and peritumoral regions of each patient's CT data. Student's t tests in combination with three feature selection methods were adopted for optimal features selection. An ensemble classifier was developed using five common machine learning classifiers with these optimal features. The performance was assessed using both training and testing cohorts, and further compared with that of Visual Geometry Group-16 (VGG-16) deep network for this predictive task. RESULTS: The classification models developed using optimal feature subsets determined from intratumoral region and peritumoral region with the ensemble classifier achieved mean area under the curve (AUC) of 0.87, 0.83 in the training cohort and 0.66, 0.60 in the testing cohort, respectively. The model developed by using the optimal feature subset selected from both intra- and peritumoral regions with the ensemble classifier achieved great performance improvement, with AUC of 0.87 and 0.78 in both cohorts, respectively, which are also superior to that of VGG-16 (AUC of 0.68 in the testing cohort). CONCLUSIONS: The proposed new radiomics strategy that extracts image features from the intra- and peritumoral regions with ensemble learning could greatly improve the diagnostic performance for the histological subtype stratification in patients with NSCLC.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/patología , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
6.
Foods ; 11(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36360124

RESUMEN

In order to solve a series of problems with kelp drying including long drying time, high energy consumption, low drying efficiency, and poor quality of dried kelp, this work proposes the design of a novel greenhouse double-evaporator solar-assisted heat pump drying system. Experiments on kelp solar-assisted heat pump drying (S-HP) and heat pump drying (HP) under the condition of irradiance of 100-700 W/m2 and a temperature of 30, 40, or 50 °C were conducted and their results were compared in terms of system performance, drying kinetics, and quality impact. The drying time was reduced with increasing irradiance or temperature. The coefficient of performance (COP) and specific moisture extraction rate (SMER) of S-HP were 3.590-6.810, and 1.660-3.725 kg/kW·h, respectively, roughly double those of HP when the temperatures are identical. The Deff of S-HP and HP were 5.431 × 10-11~11.316 × 10-11 m2/s, and 1.037 × 10-11~1.432 × 10-11 m2/s, respectively; additionally, solar radiation greatly improves Deff. The Page model almost perfectly described the changes in the moisture ratio of kelp by S-HP and HP with an inaccuracy of less than 5%. When the temperature was 40 °C and the irradiance was above 400 W/m2, the drying time of S-HP was only 3 h, and the dried kelp maintained the green color with a strong flavor and richness in mannitol. Meanwhile, the coefficient of performance was 6.810, the specific moisture extraction rate was 3.725 kg/kWh, and the energy consumption was 45.2%, lower than that of HP. It can be concluded that S-HP is highly efficient and energy-saving for macroalgae drying and can serve as an alternate technique for the drying of other aquatic products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA