RESUMEN
Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.
Asunto(s)
Células Madre Adultas/metabolismo , Fibrosis Pulmonar Idiopática/etiología , Alveolos Pulmonares/metabolismo , Células Madre Adultas/patología , Anciano , Células Epiteliales Alveolares/patología , Animales , Fenómenos Biomecánicos/fisiología , Femenino , Fibrosis/patología , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Masculino , Ratones , Persona de Mediana Edad , Alveolos Pulmonares/patología , Regeneración , Transducción de Señal , Células Madre/patología , Estrés Mecánico , Estrés Fisiológico/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismoRESUMEN
The skin serves as a physical barrier and an immunological interface that protects the body from the external environment1-3. Aberrant activation of immune cells can induce common skin autoimmune diseases such as vitiligo, which are often characterized by bilateral symmetric lesions in certain anatomic regions of the body4-6. Understanding what orchestrates the activities of cutaneous immune cells at an organ level is necessary for the treatment of autoimmune diseases. Here we identify subsets of dermal fibroblasts that are responsible for driving patterned autoimmune activity, by using a robust mouse model of vitiligo that is based on the activation of endogenous auto-reactive CD8+ T cells that target epidermal melanocytes. Using a combination of single-cell analysis of skin samples from patients with vitiligo, cell-type-specific genetic knockouts and engraftment experiments, we find that among multiple interferon-γ (IFNγ)-responsive cell types in vitiligo-affected skin, dermal fibroblasts are uniquely required to recruit and activate CD8+ cytotoxic T cells through secreted chemokines. Anatomically distinct human dermal fibroblasts exhibit intrinsic differences in the expression of chemokines in response to IFNγ. In mouse models of vitiligo, regional IFNγ-resistant fibroblasts determine the autoimmune pattern of depigmentation in the skin. Our study identifies anatomically distinct fibroblasts with permissive or repressive IFNγ responses as the key determinant of body-level patterns of lesions in vitiligo, and highlights mesenchymal subpopulations as therapeutic targets for treating autoimmune diseases.
Asunto(s)
Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Fibroblastos/inmunología , Piel/inmunología , Piel/patología , Vitíligo/inmunología , Vitíligo/patología , Adolescente , Adulto , Animales , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL10/inmunología , Quimiocina CXCL9/inmunología , Niño , Modelos Animales de Enfermedad , Femenino , Fibroblastos/patología , Humanos , Interferón gamma/inmunología , Masculino , Melanocitos/inmunología , Melanocitos/patología , Ratones , Persona de Mediana Edad , Comunicación Paracrina , RNA-Seq , Análisis de la Célula Individual , Células del Estroma/inmunología , Linfocitos T Citotóxicos/inmunología , Adulto JovenRESUMEN
Mitophagy is a fundamental quality control mechanism of mitochondria. Its regulatory mechanisms and pathological implications remain poorly understood. Here, via a mitochondria-targeted genetic screen, we found that knockout (KO) of FBXL4, a mitochondrial disease gene, hyperactivates mitophagy at basal conditions. Subsequent counter screen revealed that FBXL4-KO hyperactivates mitophagy via two mitophagy receptors BNIP3 and NIX. We determined that FBXL4 functions as an integral outer-membrane protein that forms an SCF-FBXL4 ubiquitin E3 ligase complex. SCF-FBXL4 ubiquitinates BNIP3 and NIX to target them for degradation. Pathogenic FBXL4 mutations disrupt SCF-FBXL4 assembly and impair substrate degradation. Fbxl4-/- mice exhibit elevated BNIP3 and NIX proteins, hyperactive mitophagy, and perinatal lethality. Importantly, knockout of either Bnip3 or Nix rescues metabolic derangements and viability of the Fbxl4-/- mice. Together, beyond identifying SCF-FBXL4 as a novel mitochondrial ubiquitin E3 ligase restraining basal mitophagy, our results reveal hyperactivated mitophagy as a cause of mitochondrial disease and suggest therapeutic strategies.
Asunto(s)
Enfermedades Mitocondriales , Mitofagia , Ratones , Animales , Mitofagia/fisiología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismoRESUMEN
Bioorthogonal chemistry capable of operating in live animals is needed to investigate biological processes such as cell death and immunity. Recent studies have identified a gasdermin family of pore-forming proteins that executes inflammasome-dependent and -independent pyroptosis1-5. Pyroptosis is proinflammatory, but its effect on antitumour immunity is unknown. Here we establish a bioorthogonal chemical system, in which a cancer-imaging probe phenylalanine trifluoroborate (Phe-BF3) that can enter cells desilylates and 'cleaves' a designed linker that contains a silyl ether. This system enabled the controlled release of a drug from an antibody-drug conjugate in mice. When combined with nanoparticle-mediated delivery, desilylation catalysed by Phe-BF3 could release a client protein-including an active gasdermin-from a nanoparticle conjugate, selectively into tumour cells in mice. We applied this bioorthogonal system to gasdermin, which revealed that pyroptosis of less than 15% of tumour cells was sufficient to clear the entire 4T1 mammary tumour graft. The tumour regression was absent in immune-deficient mice or upon T cell depletion, and was correlated with augmented antitumour immune responses. The injection of a reduced, ineffective dose of nanoparticle-conjugated gasdermin along with Phe-BF3 sensitized 4T1 tumours to anti-PD1 therapy. Our bioorthogonal system based on Phe-BF3 desilylation is therefore a powerful tool for chemical biology; our application of this system suggests that pyroptosis-induced inflammation triggers robust antitumour immunity and can synergize with checkpoint blockade.
Asunto(s)
Preparaciones de Acción Retardada/administración & dosificación , Neoplasias Mamarias Experimentales/inmunología , Piroptosis/inmunología , Animales , Cumarinas/administración & dosificación , Cumarinas/química , Cumarinas/metabolismo , Cumarinas/farmacocinética , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/metabolismo , Preparaciones de Acción Retardada/farmacocinética , Femenino , Proteínas Fluorescentes Verdes/administración & dosificación , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/farmacocinética , Células HeLa , Humanos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/química , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacocinética , Inflamasomas/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Oligopéptidos/administración & dosificación , Oligopéptidos/química , Oligopéptidos/metabolismo , Oligopéptidos/farmacocinética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas/administración & dosificación , Proteínas/química , Proteínas/metabolismo , Proteínas/farmacocinética , Silanos/administración & dosificación , Silanos/química , Silanos/metabolismo , Silanos/farmacocinética , Linfocitos T/inmunología , Trastuzumab/administración & dosificación , Trastuzumab/química , Trastuzumab/metabolismo , Trastuzumab/farmacocinética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Fluid clearance mediated by lymphatic vessels is known to be essential for lung inflation and gas-exchange function during the transition from prenatal to postnatal life, yet the molecular mechanisms that regulate lymphatic function remain unclear. Here, we profiled the molecular features of lymphatic endothelial cells (LECs) in embryonic and postnatal day (P) 0 lungs by single-cell RNA-sequencing analysis. We identified that the expression of c-JUN is transiently upregulated in P0 LECs. Conditional knockout of Jun in LECs impairs the opening of lung lymphatic vessels at birth, leading to fluid retention in the lungs and neonatal death. We further demonstrated that increased mechanical pressure induces the expression of c-JUN in LECs. c-JUN regulates the opening of lymphatic vessels by modulating the remodeling of the actin cytoskeleton in LECs. Our study established the essential regulatory function of c-JUN-mediated transcriptional responses in facilitating lung lymphatic fluid clearance at birth.
Asunto(s)
Células Endoteliales , Vasos Linfáticos , Humanos , Recién Nacido , Células Endoteliales/metabolismo , Pulmón/metabolismo , Vasos Linfáticos/metabolismoRESUMEN
Small interfering RNAs (siRNAs) are responsible for establishing and maintaining DNA methylation through the RNA-directed DNA methylation (RdDM) pathway in plants. Although siRNA biogenesis is well known, it is relatively unclear about how the process is regulated. By a forward genetic screen in Arabidopsis thaliana, we identified a mutant defective in NOT1 and demonstrated that NOT1 is required for transcriptional silencing at RdDM target genomic loci. We demonstrated that NOT1 is required for Pol IV-dependent siRNA accumulation and DNA methylation at a subset of RdDM target genomic loci. Furthermore, we revealed that NOT1 is a constituent of a multi-subunit CCR4-NOT deadenylase complex by immunoprecipitation combined with mass spectrometry and demonstrated that the CCR4-NOT components can function as a whole to mediate chromatin silencing. Therefore, our work establishes that the CCR4-NOT complex regulates the biogenesis of Pol IV-dependent siRNAs, and hence facilitates DNA methylation and transcriptional silencing in Arabidopsis.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , ARN Polimerasas Dirigidas por ADN/fisiología , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Factores de Transcripción/fisiologíaRESUMEN
Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1ß release was also diminished in Gsdmd(-/-) cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Inflamación/enzimología , Proteínas de Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/deficiencia , Sistemas CRISPR-Cas , Caspasa 1/metabolismo , Línea Celular , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Necrosis , Proteínas de Neoplasias/química , Proteínas de Unión a Fosfato , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Especificidad por SustratoRESUMEN
Pulmonary alveolar type I (AT1) cells cover more than 95% of alveolar surface and are essential for the air-blood barrier function of lungs. AT1 cells have been shown to retain developmental plasticity during alveolar regeneration. However, the development and heterogeneity of AT1 cells remain largely unknown. Here, we conducted a single-cell RNA-seq analysis to characterize postnatal AT1 cell development and identified insulin-like growth factor-binding protein 2 (Igfbp2) as a genetic marker specifically expressed in postnatal AT1 cells. The portion of AT1 cells expressing Igfbp2 increases during alveologenesis and in post pneumonectomy (PNX) newly formed alveoli. We found that the adult AT1 cell population contains both Hopx+Igfbp2+ and Hopx+Igfbp2- AT1 cells, which have distinct cell fates during alveolar regeneration. Using an Igfbp2-CreER mouse model, we demonstrate that Hopx+Igfbp2+ AT1 cells represent terminally differentiated AT1 cells that are not able to transdifferentiate into AT2 cells during post-PNX alveolar regeneration. Our study provides tools and insights that will guide future investigations into the molecular and cellular mechanism or mechanisms underlying AT1 cell fate during lung development and regeneration.
Asunto(s)
Células Epiteliales Alveolares , Linaje de la Célula/fisiología , Alveolos Pulmonares/citología , Análisis de la Célula Individual , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/fisiología , Animales , Diferenciación Celular , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Transgénicos , ARN/análisis , ARN/genética , ARN/metabolismo , Regeneración/fisiología , Análisis de Secuencia de ARN , Transcriptoma/genética , Transcriptoma/fisiologíaRESUMEN
The mechanism by which MORPHEUS' MOLECULE1 (MOM1) contributes to transcriptional gene silencing has remained elusive since the gene was first identified and characterized. Here, we report that two Arabidopsis thaliana PIAS (PROTEIN INHIBITOR OF ACTIVATED STAT)-type SUMO E3 ligase-like proteins, PIAL1 and PIAL2, function redundantly to mediate transcriptional silencing at MOM1 target loci. PIAL1 and PIAL2 physically interact with each other and with MOM1 to form a high molecular mass complex. In the absence of either PIAL2 or MOM1, the formation of the high molecular mass complex is disrupted. We identified a previously uncharacterized IND (interacting domain) in PIAL1 and PIAL2 and demonstrated that IND directly interacts with MOM1. The CMM2 (conserved MOM1 motif 2) domain of MOM1 was previously shown to be required for the dimerization of MOM1. We demonstrated that the CMM2 domain is also required for the interaction of MOM1 with PIAL1 and PIAL2. We found that although PIAL2 has SUMO E3 ligase activity, the activity is dispensable for PIAL2's function in transcriptional silencing. This study suggests that PIAL1 and PIAl2 act as components of the MOM1-containing complex to mediate transcriptional silencing at heterochromatin regions.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas Nucleares/genética , Unión Proteica , Factores de Transcripción/genéticaRESUMEN
The SU(VAR)3-9 homolog SUVH9 and the double-stranded RNA-binding protein IDN2 were thought to be components of an RNA-directed DNA methylation (RdDM) pathway in Arabidopsis. We previously found that SUVH9 interacts with MORC6 but how the interaction contributes to transcriptional silencing remains elusive. Here, our genetic analysis indicates that SUVH2 and SUVH9 can either act in the same pathway as MORC6 or act synergistically with MORC6 to mediate transcriptional silencing. Moreover, we demonstrate that IDN2 interacts with MORC6 and mediates the silencing of a subset of MORC6 target loci. Like SUVH2, SUVH9, and IDN2, other RdDM components including Pol IV, Pol V, RDR2, and DRM2 are also required for transcriptional silencing at a subset of MORC6 target loci. MORC6 was previously shown to mediate transcriptional silencing through heterochromatin condensation. We demonstrate that the SWI/SNF chromatin-remodeling complex components SWI3B, SWI3C, and SWI3D interact with MORC6 as well as with SUVH9 and then mediate transcriptional silencing. These results suggest that the RdDM components are involved not only in DNA methylation but also in MORC6-mediated heterochromatin condensation. This study illustrates how DNA methylation is linked to heterochromatin condensation and thereby enhances transcriptional silencing at methylated genomic regions.
Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética , Heterocromatina/genética , Metiltransferasas/genética , Transcripción Genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Metiltransferasas/metabolismo , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismoRESUMEN
Although intratumor diversity driven by selection has been the prevailing view in cancer biology, recent population genetic analyses have been unable to reject the neutral interpretation. As the power to reject neutrality in tumors is often low, it will be desirable to have an alternative means to test selection directly. Here, we utilize gene expression data as a surrogate for functional significance in intra- and intertumor comparisons. The expression divergence between samples known to be driven by selection (e.g., between tumor and normal tissues) is always higher than the divergence between normal samples, which should be close to the neutral level of divergence. In contrast, the expression differentiation between regions of the same tumor, being lower than the neutral divergence, is incompatible with the hypothesis of selectively driven divergence. To further test the hypothesis of neutral evolution, we select a hepatocellular carcinoma tumor that has large intratumor SNV and CNV (single nucleotide variation and copy number variation, respectively) diversity. This tumor enables us to calibrate the level of expression divergence against that of genetic divergence. We observe that intratumor divergence in gene expression profile lags far behind genetic divergence, indicating insufficient phenotypic differences for selection to operate. All these expression analyses corroborate that natural selection does not operate effectively within tumors, supporting recent interpretations of within-tumor diversity. As the expected level of genetic diversity, hence the potential for drug resistance, would be much higher under neutrality than under selection, the issue is of both theoretical and clinical significance.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/genética , Transcriptoma/genética , Variaciones en el Número de Copia de ADN/genética , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Expresión Génica , Flujo Genético , Variación Genética/genética , Humanos , Selección Genética/genética , Análisis de Secuencia de ADN/métodosRESUMEN
DNA methylation in transposons and other DNA repeats is conserved in plants as well as in animals. In Arabidopsis thaliana, an RNA-directed DNA methylation (RdDM) pathway directs de novo DNA methylation. We performed a forward genetic screen for suppressors of the DNA demethylase mutant ros1 and identified a novel Zinc-finger and OCRE domain-containing Protein 1 (ZOP1) that promotes Pol IV-dependent siRNA accumulation, DNA methylation, and transcriptional silencing. Whole-genome methods disclosed the genome-wide effects of zop1 on Pol IV-dependent siRNA accumulation and DNA methylation, suggesting that ZOP1 has both RdDM-dependent and -independent roles in transcriptional silencing. We demonstrated that ZOP1 is a pre-mRNA splicing factor that associates with several typical components of the splicing machinery as well as with Pol II. Immunofluorescence assay revealed that ZOP1 overlaps with Cajal body and is partially colocalized with NRPE1 and DRM2. Moreover, we found that the other development-defective splicing mutants tested including mac3a3b, mos4, mos12 and mos14 show defects in RdDM and transcriptional silencing. We propose that the splicing machinery rather than specific splicing factors is involved in promoting RdDM and transcriptional silencing.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metilación de ADN , ADN/metabolismo , Regulación de la Expresión Génica , ARN/metabolismo , Transcripción Genética , Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasa II/metabolismo , Empalme del ARNRESUMEN
Silencing of transposable elements (TEs) in the metazoan germline is critical for genome integrity and is primarily dependent on Piwi proteins and associated RNAs, which exert their function through both transcriptional and posttranscriptional mechanisms. Here, we report that the evolutionarily conserved Pelo (Dom34)-Hbs1 mRNA surveillance complex is required for transposon silencing in the Drosophila germline. In pelo mutant gonads, mRNAs and proteins of some selective TEs are up-regulated. Pelo is not required for piRNA biogenesis, and our studies suggest that Pelo may function at the translational level to silence TEs: This function requires interaction with Hbs1, and overexpression of RpS30a partially reverts TE-silencing defects in pelo mutants. Interestingly, TE silencing and spermatogenesis defects in pelo mutants can also effectively be rescued by expressing the mammalian ortholog of Pelo. We propose that the Pelo-Hbs1 surveillance complex provides another level of defense against the expression of TEs in the germline of Drosophila and possibly all metazoa.
Asunto(s)
Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Silenciador del Gen , ARN/genética , Animales , Proteínas de Drosophila/genética , Femenino , Proteínas de Unión al GTP/genética , Células Germinativas , Proteínas HSP70 de Choque Térmico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Ovario/metabolismo , Factores de Elongación de Péptidos/genética , ARN Interferente Pequeño/genéticaRESUMEN
The histone demethylase JMJ14 catalyzes histone demethylation at lysine 4 of histone 3 and is involved in transcriptional repression and flowering time control in Arabidopsis. Here, we report that JMJ14 is physically associated with two previously uncharacterized NAC transcription factors, NAC050 and NAC052. The NAC050/052-RNAi plants and the CRISPR-CAS9-mediated nac050/052 double mutant plants show an early flowering phenotype, which is similar to the phenotype of jmj14, suggesting a functional association between JMJ14 and NAC050/052. RNA-seq data indicated that hundreds of common target genes are co-regulated by JMJ14 and NAC50/052. Our ChIP analysis demonstrated that JMJ14 and NAC050 directly bind to co-upregulated genes shared in jmj14 and NAC050/052-RNAi, thereby facilitating H3K4 demethylation and transcriptional repression. The NAC050/052 recognition DNA cis-element was identified by an electrophoretic mobility shift assay at the promoters of its target genes. Together, our study identifies two novel NAC transcription repressors and demonstrates that they are involved in transcriptional repression and flowering time control by associating with the histone demethylase JMJ14.
Asunto(s)
Flores/fisiología , Regulación de la Expresión Génica/fisiología , Histona Demetilasas/metabolismo , Factores de Transcripción/fisiología , Cromatografía de Afinidad , Cromatografía en Gel , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Espectrometría de Masas , Técnicas del Sistema de Dos HíbridosRESUMEN
RNA-directed DNA methylation (RdDM) is required for transcriptional silencing of transposons and other DNA repeats in Arabidopsis thaliana. Although previous research has demonstrated that the SET domain-containing SU(VAR)3-9 homologs SUVH2 and SUVH9 are involved in the RdDM pathway, the underlying mechanism remains unknown. Our results indicated that SUVH2 and/or SUVH9 not only interact with the chromatin-remodeling complex termed DDR (DMS3, DRD1, and RDM1) but also with the newly characterized complex composed of two conserved Microrchidia (MORC) family proteins, MORC1 and MORC6. The effect of suvh2suvh9 on Pol IV-dependent siRNA accumulation and DNA methylation is comparable to that of the Pol V mutant nrpe1 and the DDR complex mutant dms3, suggesting that SUVH2 and SUVH9 are functionally associated with RdDM. Our CHIP assay demonstrated that SUVH2 and SUVH9 are required for the occupancy of Pol V at RdDM loci and facilitate the production of Pol V-dependent noncoding RNAs. Moreover, SUVH2 and SUVH9 are also involved in the occupancy of DMS3 at RdDM loci. The putative catalytic active site in the SET domain of SUVH2 is dispensable for the function of SUVH2 in RdDM and H3K9 dimethylation. We propose that SUVH2 and SUVH9 bind to methylated DNA and facilitate the recruitment of Pol V to RdDM loci by associating with the DDR complex and the MORC complex.
Asunto(s)
Proteínas de Arabidopsis/genética , Ensamble y Desensamble de Cromatina/genética , ARN Polimerasas Dirigidas por ADN/genética , N-Metiltransferasa de Histona-Lisina/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estructura Terciaria de Proteína/genética , ARN/genética , ARN Interferente Pequeño/genética , ARN no Traducido/genéticaRESUMEN
Transcription factors primarily regulate gene expression by determining which genes are transcribed at initiation and the extent to which those genes are transcribed during elongation. Brain and muscle Arnt-like protein-1 (BMAL1, ARNTL) is a well-characterized key activator of genes related to circadian rhythm that can specifically bind promoter boxes (E-boxes), cis-acting DNA elements. Previous genetic and biochemical studies have shown that BMAL1 regulates the circadian clock feedback loop, but the role of BMAL1 in transcription is still unclear. BMAL1 is structurally and functionally similar to c-MYC, a canonical regulator of transcription elongation, and both proteins contain beta helix-loop-helix domains and bind to E-boxes. In the current study, we utilized POL2 and H3K4me3 chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) in cells with BMAL1 gene knockout. The results demonstrate that, compared to wild type cells, both POL2 and H3K4me3 enrichment at transcription starting sites of clock-related genes are compromised in BMAL1 gene knockout cell. We also quantified nascent RNA production in wild type and BMAL1 gene knockout of clock-related genes. The results show that, compared to wild type cells, nascent RNA production is also reduced. In conclusion, these results suggest that BMAL1 is a major regulator of transcription initiation and activates circadian clock gene expression.
Asunto(s)
Factores de Transcripción ARNTL/fisiología , Relojes Circadianos/genética , Regulación de la Expresión Génica , Iniciación de la Transcripción Genética , Factores de Transcripción ARNTL/genética , Animales , Línea Celular , ADN Polimerasa II/metabolismo , Histonas/metabolismo , Humanos , Ratones , Elongación de la Transcripción Genética , Sitio de Iniciación de la TranscripciónRESUMEN
Atherothrombotic vascular disease is already the leading cause of mortality worldwide. Atherosclerosis shares features with diseases caused by chronic inflammation. More attention should concentrates on the innate immunity effect atherosclerosis progress. RIP3 (receptor-interacting protein kinase 3) act through the transcription factor named Nr4a3 (Nuclear orphan receptors) to regulate cytokine production. Deletion RIP3 decreases IL-1α production. Injection of anti-IL-1α antibody protects against the progress of atherosclerosis in ApoE -/- mice. RIP3 as a molecular switch in necrosis, controls macrophage necrotic death caused inflammation. Inhibiting necrosis will certainly reduce atherosclerosis through limit inflammation. Necrotic cell death caused systemic inflammation exacerbated cardiovascular disease. Inhibition of necrosis may yield novel therapeutic targets for treatment in years to come.
Asunto(s)
Aterosclerosis/complicaciones , Aterosclerosis/inmunología , Inflamación/complicaciones , Inflamación/inmunología , Necrosis/complicaciones , Necrosis/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Animales , Aterosclerosis/genética , Citocinas/genética , Citocinas/inmunología , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inflamación/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Necrosis/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genéticaRESUMEN
DNA methylation and repressive histone Histone3 Lysine9 (H3K9) dimethylation correlate with chromatin silencing in plants and mammals. To identify factors required for DNA methylation and H3K9 dimethylation, we screened for suppressors of the repressor of silencing1 (ros1) mutation, which causes silencing of the expression of the RD29A (RESPONSE TO DESSICATION 29A) promoter-driven luciferase transgene (RD29A-LUC) and the 35S promoter-driven NPTII (NEOMYCIN PHOSPHOTRANSFERASE II) transgene (35S-NPTII). We identified the folylpolyglutamate synthetase FPGS1 and the known factor DECREASED DNA METHYLATION1 (DDM1). The fpgs1 and ddm1 mutations release the silencing of both RD29A-LUC and 35S-NPTII. Genome-wide analysis indicated that the fpgs1 mutation reduces DNA methylation and releases chromatin silencing at a genome-wide scale. The effect of fpgs1 on chromatin silencing is correlated with reduced levels of DNA methylation and H3K9 dimethylation. Supplementation of fpgs1 mutants with 5-formyltetrahydrofolate, a stable form of folate, rescues the defects in DNA methylation, histone H3K9 dimethylation, and chromatin silencing. The competitive inhibitor of methyltransferases, S-adenosylhomocysteine, is markedly upregulated in fpgs1, by which fpgs1 reduces S-adenosylmethionine accessibility to methyltransferases and accordingly affects DNA and histone methylation. These results suggest that FPGS1-mediated folate polyglutamylation is required for DNA methylation and H3K9 dimethylation through its function in one-carbon metabolism. Our study makes an important contribution to understanding the complex interplay among metabolism, development, and epigenetic regulation.
Asunto(s)
Arabidopsis/genética , Cromatina/genética , Metilación de ADN , Silenciador del Gen , Histonas/metabolismo , Péptido Sintasas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Cromatina/metabolismo , Cromosomas de las Plantas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ácido Fólico/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Immunoblotting , Kanamicina Quinasa/genética , Kanamicina Quinasa/metabolismo , Lisina , Metilación , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Péptido Sintasas/metabolismo , Plantas Modificadas Genéticamente , Ácido Poliglutámico/metabolismo , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Transcription of rRNA genes (rDNAs) in the nucleolus is regulated by epigenetic chromatin modifications including histone H3 lysine (de)methylation. Here we show that LegAS4, a Legionella pneumophila type IV secretion system (TFSS) effector, is targeted to specific rDNA chromatin regions in the host nucleolus. LegAS4 promotes rDNA transcription, through its SET-domain (named after Drosophila Su(var)3-9, enhancer of zeste [E(z)], and trithorax [trx]) histone lysine methyltransferase (HKMTase) activity. LegAS4's association with rDNA chromatin is mediated by interaction with host HP1α/γ. L. pneumophila infection potently activates rDNA transcription in a TFSS-dependent manner. Other bacteria, including Bordetella bronchiseptica and Burkholderia thailandensis, also harbour nucleolus-localized LegAS4-like HKMTase effectors. The B. thailandensis type III effector BtSET promotes H3K4 methylation of rDNA chromatin, contributing to infection-induced rDNA transcription and bacterial intracellular replication. Thus, activation of host rDNA transcription might be a general bacterial virulence strategy.