Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(22): 12360-12365, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33723912

RESUMEN

Optimizing the hydrogen adsorption Gibbs free energy (ΔGH ) of active sites is essential to improve the overpotential of the electrocatalytic hydrogen evolution reaction (HER). We doped graphene-like Co0.85 Se with sulfur and found that the active sites are reversed (from cationic Co sites to anionic S sites), which contributed to an enhancement in electrocatalytic HER performance. The optimal S-doped Co0.85 Se composite has an overpotential of 108 mV (at 10 mA cm-2 ) and a Tafel slope of 59 mV dec-1 , which exceeds other reported Co0.85 Se-based electrocatalysts. The doped S sites have much higher activity than the Co sites, with a hydrogen adsorption Gibbs free energy (ΔGH ) close to zero (0.067 eV), which reduces the reaction barrier for hydrogen production. This work provides inspiration for optimizing the intrinsic HER activity of other related transition metal chalcogenides.

2.
Chemistry ; 26(27): 6006-6016, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32073696

RESUMEN

Low-cost Si-based anode materials with excellent electrochemical lithium storage present attractive prospects for lithium-ion batteries (LIBs). Herein, porous Si-Cu3 Si-Cu microsphere@C composites are designed and prepared by means of an etching/electroless deposition and subsequent carbon coating. The composites show a core-shell structure, with a porous Si/Cu microsphere core surrounded by the N-doped carbon shell. The Cu and Cu3 Si nanoparticles are embedded inside porous silicon microspheres, forming the porous Si/Cu microsphere core. The microstructure and lithium storage performance of porous Si-Cu3 Si-Cu microsphere@C composites can be effectively tuned by changing electroless deposition time. The Si-Cu3 Si-Cu microsphere@C composite prepared with 12 min electroless deposition delivers a reversible capacity of 627 mAh g-1 after 200 cycles at 2 A g-1 , showing an enhanced lithium storage ability. The superior lithium storage performance of the Si-Cu3 Si-Cu microsphere@C composite can be ascribed to the improved electronic conductivity, enhanced mechanical stability, and better buffering against the large volume change in the repeated lithiation/delithiation processes.

3.
Angew Chem Int Ed Engl ; 59(50): 22743-22748, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-32896011

RESUMEN

Vacancy engineering plays vital role in the design of high-performance electrocatalysts. Here, we introduced coupled cation-vacancy pairs in Ni-doped CoSe to achieve boosted hydrogen evolution reaction (HER) activity through a facile topochemical intercalation approach. Adjacent Co vacancy pairs and heteroatom Ni doping contribute together for the upshift of the Se 4pz orbital, which induces larger overlap between the Se 4p and H 1s orbitals. As a result, the free energy of H adsorption can be lowered significantly. With an advanced HER activity of 185.7 mV at 10 mA cm-2 , this work provides new direction and guidance for the design of novel electrocatalysts.

4.
J Colloid Interface Sci ; 658: 383-391, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113547

RESUMEN

Local electronic structure engineering is an effective approach for optimizing the catalytic performance of electrocatalysts. Herein, a dual-phase vanadium-doped nickel phosphide (NiVxP) catalyst supported on nickel foam (NF) was synthesized via a successive hydrothermal and phosphorization process with interconnected nanosheet structures and homogeneous distributions. The catalyst's stable phase and strong adhesion to the substrate ensure good electrochemical stability. The incorporation of V effectively promotes initial H2O adsorption and H* formation, leading to a lower overpotential. As a result, the fabricated NiVxP@NF demonstrates favorable hydrogen evolution reaction (HER) activity and stability, with only 85 mV overpotential needed to reach 10 mA·cm-2 and showing no significant increase in the overpotential during the long-term 78-hour stability test.

5.
RSC Adv ; 14(15): 10229-10243, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38544943

RESUMEN

Doping active agents into metal-organic frameworks (MOFs) is widely sought after owing to its potential to enhance adsorption and photocatalytic efficiency, surpassing the potential of bare frameworks. This study incorporated a catalytically active NS-ligand (1,2-benzisothiazolin-3-one) into a very stable and porous PCN-600 MOF via an in situ synthesis approach. The NS-ligand, which matched with the host ligands of PCN-600, enabled the highly efficient synthesis of NS-co-doped MOFs. The pristine PCN-600 framework and morphology were retained in the MOF altered with the NS-ligand, as demonstrated by XRD, FTIR, and SEM characterizations. A high electron density was generated due to the synergistic effect between the defects in the NS-co-doped photocatalyst and engineered active sites. This facilitated the adsorption-assisted photocatalytic decontamination of metronidazole with an 87% removal by PCN-600-NS-10 compared to 43% by pristine PCN-600 within a total time of 150 min. The MOF doped with the NS-ligand exhibited a reduced band gap and enhanced adsorption and photocatalytic capabilities compared to pristine PCN-600. The impact of operational parameters, such as catalyst dosage, initial solution pH, and MNZ concentration, was also explored. Pseudo-second and pseudo-first order models were found to describe the adsorption and degradation kinetics of metronidazole and the Dubinin-Radushkevich model was found to fit the equilibrium adsorption results. The thermodynamic characteristics of adsorption processes (ΔGads, ΔHads, and ΔSads) demonstrated that adsorption was physical, spontaneous, and exothermic and resulted in increased entropy.

6.
Nanoscale ; 15(7): 3550-3559, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36723134

RESUMEN

Efficient and low-cost transition metal single-atom catalysts (TMSACs) for hydrogen evolution reaction (HER) have been recognized as research hotspots recently with advances in delivering good catalytic activity without noble metals. However, the high-cost complex preparation of TMSACs and insufficient stability limited their practical applications. Herein, a simple top-down pyrolysis approach to obtain P-modified Co SACs loaded on the crosslinked defect-rich carbon nanosheets was introduced for alkaline hydrogen evolution, where Co atoms are locally confined before pyrolysis to prevent aggregation. Thereby, the abundant defects and the unsaturated coordination formed during the pyrolysis significantly improved the stability of the monatomic structure and reduced the reaction barrier. Furthermore, the synergy between cobalt atoms and phosphorus atoms was established to optimize the decomposition process of water molecules, which delivers the key to promoting the slow reaction kinetics of alkaline HER. As the result, the cobalt SAC exhibited excellent catalytic activity and stability for alkaline HER, with overpotentials of 70 mV and 192 mV at current densities of -10 mA cm-2 and -100 mA cm-2, respectively.

7.
Adv Mater ; 33(9): e2007894, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33511705

RESUMEN

Layered 2D materials are a vital class of electrocatalys for the hydrogen evolution reaction (HER), due to their large area, excellent activity, and facile fabrication. Theoretical caculations domenstrate, however, that only the edges of the 2D nanosheets act as active sites, while the much larger basal plane exhibits passive activity. Here, from a distinguishing perspective, RhSe2 is reported as a "3D" electrocatalyst for HER with top-class activity, synthesized by a facile solid-state method. Superior to 2D materials, multiple crystal facets of RhSe2 exhibit near-zero free energy change of hydrogen adsorption (ΔGH ), which guarantees high performance in most common morphologies. Density functional theory calculations reveal that the low-coordinated Rh atoms act as the active sites in acid, which enables the modified Kubas-mediated pathway, while the Se atoms act as the active sites in an alkaline medium. The overpotentials of HER activity of RhSe2 are measured to be 49.9 and 81.6 mV at 10 mA cm-2 in acid and alkaline solutions, respectively. This work paves the way to new transition metal chalcogenide catalysts.

8.
ACS Appl Mater Interfaces ; 10(13): 10974-10985, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29537815

RESUMEN

Hierarchically nanostructured binary/multiple transition-metal oxides with electrically conductive coatings are very attractive for lithium-ion batteries owing to their excellent electrochemical properties induced by their unique compositions and microstructures. Herein, hierarchical MnO-doped Fe3O4@C composite nanospheres are prepared by a simple one-step annealing in Ar atmosphere, using Mn-doped Fe-based metal-organic frameworks (Mn-doped MIL-53(Fe)) as precursor. The MnO-doped Fe3O4@C composite particles have a uniform nanosphere structure with a diameter of ∼100 nm, and each nanosphere is composed of clustered primary nanoparticles with an amorphous carbon shell, forming a unique hierarchical nanoarchitecture. The as-prepared hierarchical MnO-doped Fe3O4@C composite nanospheres exhibit markedly enhanced lithium-storage performance, with a large capacity of 1297.5 mAh g-1 after 200 cycles at 200 mA g-1. The cycling performance is clarified through analyzing the galvanostatic discharge/charge voltage profiles and electrochemical impedance spectra at different cycles. The unique microstructures and Mn element doping of the hierarchical MnO-doped Fe3O4@C composite nanospheres lead to their enhanced lithium-storage performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA