Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 136(4): 67, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36952028

RESUMEN

KEY MESSAGE: Combined with BSE-Seq analysis and multiple genetic populations, three genes involved in stripe rust resistance were identified in Chinese wheat landrace Dahongpao, including a novel suppressor on 2BS. Dahongpao (DHP), a landrace of hexaploid wheat in China, exhibits a high degree of stripe rust resistance in the field for many years. In this study, bulked segregant analysis coupled with exome capture sequencing (BSE-Seq) was used to identify genes encoding stripe rust resistance in multiple genetic populations from the cross between DHP and a susceptible hexaploid Australian cultivar, Avocet S (AvS). The most effective QTL in DHP was Yr18, explaining up to 53.08% of phenotypic variance in the F2:3 families. To identify additional genes, secondary mapping populations SP1 and SP2 were produced by crossing AvS with two resistant lines derived from F2:3 families lacking Yr18. An all-stage resistance gene, Yr.DHP-6AS, was identified via BSE-Seq analysis of SP1. Combined the recombinant plants from both SP1 and SP2, Yr.DHP-6AS was located between KP6A_1.66 and KP6A_8.18, corresponding to the same region as Yr81. In addition, secondary mapping populations SP3 and SP4 were developed by selfing a segregating line from F2:3 families lacking Yr18. A novel suppressor gene on chromosome 2BS was identified from DHP for effectively suppressing the resistance of Yr.DHP-6AS in the SP3 and SP4. As a result, the wheat lines carrying both Yr18 and Yr.DHP-6AS show higher level of stripe rust resistance than DHP, providing an effective and simple combination for developing new wheat cultivars with ASR and APR genes. Further, the newly developed KASP markers, KP6A_1.99 and KP6A_5.22, will facilitate the application of Yr.DHP-6AS in wheat breeding via marker-assisted selection.


Asunto(s)
Basidiomycota , Triticum , Humanos , Mapeo Cromosómico , Triticum/genética , Fitomejoramiento , Resistencia a la Enfermedad/genética , Australia , Enfermedades de las Plantas/genética
2.
Sensors (Basel) ; 23(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37631790

RESUMEN

Accurate prediction of vehicle acceleration has significant practical applications. Deep learning, as one of the methods for acceleration prediction, has shown promising applications in acceleration prediction. However, due to the influence of multiple factors on acceleration, a single data model may not be suitable for various driving scenarios. Therefore, this paper proposes a hybrid approach for vehicle acceleration prediction by combining clustering and deep learning techniques. Based on historical data of vehicle speed, acceleration, and distance to the preceding vehicle, the proposed method first clusters the acceleration patterns of vehicles. Subsequently, different prediction models and parameters are applied to each cluster, aiming to improve the prediction accuracy. By considering the unique characteristics of each cluster, the proposed method can effectively capture the diverse acceleration patterns. Experimental results demonstrate the superiority of the proposed approach in terms of prediction accuracy compared to benchmarks. This paper contributes to the advancement of sensor data processing and artificial intelligence techniques in the field of vehicle acceleration prediction. The proposed hybrid method has the potential to enhance the accuracy and reliability of acceleration prediction, enabling applications in various domains, such as autonomous driving, traffic management, and vehicle control.

3.
J Nat Prod ; 85(8): 2026-2034, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35920623

RESUMEN

Pd(OAc)2/NiXantphos efficiently catalyzed the direct arylation at the C-14 position of matrine, leading to 38 arylmatrine derivatives (1a-19a and 1b-19b) in good yields. Most of these matrine analogues showed enhanced insecticidal effects superior to the parent compound matrine. Among them, the 3,5-diphenylbenzene analogue (8b) exhibited the most potent in vivo antifeedant activity (EC50 = 0.19 mg/mL) against Spodoptera exigua (Hübner), with approximately 25-fold more activity than matrine, for which the preliminary mechanism of action was verified through enzyme inhibition activities and molecular docking. Compound 8b as well displayed in vitro antiproliferation activity on Sf9 insect cells (IC50 = 8.1 µM), and its apoptotic induction effect was illustrated by morphological observation and DNA fragment analysis. Overall, the above results provide further information on the potential of arylmatrine-type lead compounds for the prevention and control of insect pests.


Asunto(s)
Insecticidas , Animales , Catálisis , Insectos , Insecticidas/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Paladio/farmacología , Spodoptera , Relación Estructura-Actividad
4.
Pak J Pharm Sci ; 35(6): 1637-1646, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36789823

RESUMEN

Multiple high-performance liquid chromatographic (HPLC) approaches have been briefly defined for the assessment of zolmitriptan (ZMT). These methods are either cumbersome or require a plentiful volume of organic solvents, thus offering extortionate procedures. The objective of this study was to establish and validate a new rapid, eco- friendly and cost-effective HPLC method for the analysis of ZMT. The calibration curve for ZMT was established using simulated salivary fluid (SSF) and rat plasma for in-vitro and in-vivo analysis, respectively. Chromatogram separation was performed using a CST column (250mm × 4.6mm, 5µm) as a stationary phase and maintained at a temperature of 40°C. The methods were authenticated for linearity, system suitability, accuracy, precision, reproducibility, limit of detection (LOD) and limit of quantification (LOQ). The results of the validation variables and stability studies indicated that the methods were established in accordance with the guidelines of ICH and the USFDA. The established technique was time-saving, precise, eco- friendly and economical compared with the reported technique. In addition, the developed method was sufficiently repeatable for in vitro and in vivo analysis of ZMT.


Asunto(s)
Oxazolidinonas , Ratas , Animales , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Límite de Detección
5.
Materials (Basel) ; 15(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35629620

RESUMEN

Migraine is a neurological disorder characterized by severe headaches, visual aversions, auditory, and olfactory disorders, accompanied by nausea and vomiting. Zolmitriptan (ZMT®) is a potent 5HT1B/1D serotonin receptor agonist frequently used for the treatment of migraine. It has erratic absorption from the gastrointestinal tract (GIT), but its oral bioavailability is low (40-45%) due to the hepatic metabolism. This makes it an ideal candidate for oral fast dissolving formulations. Hence, the current study was undertaken to design and develop oral fast-dissolving films (OFDFs) containing ZMT for migraine treatment. The OFDFs were formulated by the solvent casting method (SCM) using Pullulan (PU) and maltodextrin (MDX) as film-forming agents and propylene glycol (PG) as a plasticizer. The strategy was designed using Box-Behnken experimental design considering the proportion of PU:MDX and percentage of PG as independent variables. The effectiveness of the OFDF's was measured based on the following responses: drug release at five min, disintegration time (D-time), and tensile strength (TS). The influence of formulation factors, including percent elongation (%E), thickness, water content, moisture absorption, and folding endurance on ZMT-OFDFs, were also studied. The results showed a successful fabrication of stable ZMT-OFDFs, with surface uniformity and amorphous shape of ZMT in fabricated films. The optimized formulation showed a remarkable rapid dissolution, over 90% within the first 5 min, a fast D-time of 18 s, and excellent mechanical characteristics. Improved maximum plasma concentration (C max) and area under the curve (AUC 0-t) in animals (rats) treated with ZMT-OFDFs compared to those treated with an intra-gastric (i-g) suspension of ZMT were also observed. Copolymer OFDFs with ZMT is an exciting proposition with great potential for the treatment of migraine headache. This study offers a promising strategy for developing ZMT-OFDFs using SCM. ZMT-OFDFs showed remarkable rapid dissolution and fast D-time, which might endeavor ZMT-OFDFs as an auspicious alternative approach to improve patient compliance and shorten the onset time of ZMT in migraine treatment.

6.
Sci Rep ; 12(1): 15290, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088472

RESUMEN

Unrestricted reproduction and spread of pest had caused great damage to the quality and yield of crops in recent years. Besides the use of traditional chemical pesticides, natural products also make a huge contribution against pests. Chasmanthinine, a diterpenoid alkaloid isolated from Aconitum franchetii var. villosulum, shown extremely antifeedant activity against Spodoptera exigua. Therefore, a series of novel Chasmanthinine derivatives were synthesized and their biological activity was studied in this work. Compound 33 showed the strongest antifeedant activity (EC50 = 0.10 mg/cm2) among all the test compounds. The mechanism research of 33 revealed that its antifeedant effect was related to the inhibition of carboxylesterase (CES), and proved the thiophene acyl group could form a strong binding effect with CES by molecular docking. Moreover, compound 10 exhibited the strongest cytotoxicity (IC50 = 12.87 µM) against Sf9 cell line and moderate contact toxicity. The mechanism research indicated that compound 10 could induce Sf9 cells apoptosis. In summary, the results lay a foundation for the application of diterpene alkaloids in plant protection.


Asunto(s)
Aconitum , Alcaloides , Insecticidas , Aconitum/química , Alcaloides/química , Animales , Insecticidas/farmacología , Simulación del Acoplamiento Molecular , Spodoptera
7.
Pharmaceutics ; 14(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36559181

RESUMEN

Rizatriptan (RZT) is an efficient anti-migraine drug which belongs to the class of selective 5 HT (1B/1D) serotonin receptor agonists. Nevertheless, RZT elicits several adverse effects and RZT nasal sprays have a limited half-life, requiring repeated doses that could cause patient noncompliance or harm to the nasopharynx and cilia. The current research aimed to develop orally disintegrating films (ODFs) of RZT employing maltodextrin (MTX) and pullulan (PUL) as film-forming polymers, as well as propylene glycol (PG) as a plasticizer. The ODFs were prepared by solvent casting method (SCM). The technique was optimized using Box-Behnken design (BBD), contemplating the ratios of PUL: MTX and different levels of PG (%) as factor variables. The influence of these factors was systematically analyzed on the selected dependent variables, including film thickness, disintegration time (D-time), folding endurance (FE), tensile strength (TS), percent elongation (%E), moisture content (%), and water uptake (%). In addition, the surface morphology, solid state analysis, drug content uniformity (%), drug release (%), and pH of the RZT-ODFs were also studied. The results demonstrated a satisfactory stable RZT-ODFs formulation that exhibited surface homogeneity and amorphous RZT in films with no discernible interactions between the model drug and polymeric materials. The optimized film showed a rapid D-time of 16 s and remarkable mechanical features. The in vitro dissolution kinetics showed that 100% RZT was released from optimized film compared to 61% RZT released from conventional RZT formulation in the initial 5 min. An animal pharmacokinetic (PK) investigation revealed that RZT-ODFs had a shorter time to achieve peak plasma concentration (Tmax), a higher maximum plasma concentration (Cmax), and area under the curve (AUC0-t) than traditional oral mini capsules. These findings proposed a progressive approach for developing anti-migraine drugs that could be useful in reducing the complications of dysphagia in geriatric and pediatric sufferers.

8.
Front Cell Neurosci ; 15: 751439, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630045

RESUMEN

Myelination of neuronal axons in the central nervous system (CNS) by oligodendrocytes (OLs) enables rapid saltatory conductance and axonal integrity, which are crucial for normal brain functioning. Previous studies suggested that different subtypes of oligodendrocytes in the CNS form different types of myelin determined by the diameter of axons in the unit. However, the molecular mechanisms underlying the developmental association of different types of oligodendrocytes with different fiber sizes remain elusive. In the present study, we present the evidence that the intracellular Ca2+ release channel associated receptor (Itpr2) contributes to this developmental process. During early development, Itpr2 is selectively up-regulated in oligodendrocytes coinciding with the initiation of myelination. Functional analyses in both conventional and conditional Itpr2 mutant mice revealed that Itpr2 deficiency causes a developmental delay of OL differentiation, resulting in an increased percentage of CAII+ type I/II OLs which prefer to myelinate small-diameter axons in the CNS. The increased percentage of small caliber myelinated axons leads to an abnormal compound action potentials (CAP) in the optic nerves. Together, these findings revealed a previously unrecognized role for Itpr2-mediated calcium signaling in regulating the development of different types of oligodendrocytes.

9.
Int J Pharm ; 592: 119936, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33038455

RESUMEN

Ethosomes are widely applied as the carriers for the transdermal delivery of hydrophobic and hydrophilic drugs. Herein, curcumin-loaded ethosomes (CE) with different phospholipid composition were formulated and thoroughly compared. A significant interaction between the unsaturated phosphatidylcholine (PC) and saturated hydrogenated phosphatidylcholine (HPC) was found by molecular simulation and differential scanning calorimetry (DSC), which led to the reduction of PC peroxidation with the presence of HPC. Subsequently, the composite phospholipid ethosomes containing curcumin were prepared for the first time to evaluate their properties in comparison with the conventional ethosomes composed of PC (CE-P) or HPC (CE-H). CE with PC/HPC ratio of 1:1 (CE-P1H1) with the best vesicle stability and flexibility significantly decreased the uptake by HaCaT cells compared to CE-H and free curcumin, indicating reduced skin cell toxicity. Compared with free curcumin, CE-P1H1 had the highest transdermal efficiency (p < 0.001), followed by CE-P (p < 0.05), partly due to the fact that CE-P1H1 could disturb lipid domain of stratum corneum (SC). Moreover, CE-P1H1 was found to promote curcumin for deep penetration of the skin via the hair follicles route. Our study has shown that using composite phospholipid ethosomes as lipid vesicular carriers could enhance transdermal penetration of drugs and increase in the vesicle stability.


Asunto(s)
Curcumina , Absorción Cutánea , Administración Cutánea , Curcumina/metabolismo , Portadores de Fármacos/metabolismo , Liposomas/metabolismo , Permeabilidad , Fosfolípidos/metabolismo , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA