Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(17): 6550-6557, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38642045

RESUMEN

There is growing interest in developing a high-performance self-supervised denoising algorithm for real-time chemical hyperspectral imaging. With a good understanding of the working function of the zero-shot Noise2Noise-based denoising algorithm, we developed a self-supervised Signal2Signal (S2S) algorithm for real-time denoising with a single chemical hyperspectral image. Owing to the accurate distinction and capture of the weak signal from the random fluctuating noise, S2S displays excellent denoising performance, even for the hyperspectral image with a spectral signal-to-noise ratio (SNR) as low as 1.12. Under this condition, both the image clarity and the spatial resolution could be significantly improved and present an almost identical pattern with a spectral SNR of 7.87. The feasibility of real-time denoising during imaging was well demonstrated, and S2S was applied to monitor the photoinduced exfoliation of transition metal dichalcogenide, which is hard to accomplish by confocal Raman spectroscopy. In general, the real-time denoising capability of S2S offers an easy way toward in situ/in vivo/operando research with much improved spatial and temporal resolution. S2S is open-source at https://github.com/3331822w/Signal2signal and will be accessible online at https://ramancloud.xmu.edu.cn/tutorial.

2.
Anal Chem ; 94(37): 12657-12663, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36070514

RESUMEN

Most food packages are made of plastics, nanoplastics released from which can be directly ingested and induce serious damage to organisms. Therefore, it is urgent to develop an effective and convenient method for nanoplastic determinations in food packages. In this work, we present a sandwich-based electrochemical strategy for nanoplastic determination. Positively charged Au nanoparticles were coated onto a Au electrode to selectively capture negatively charged nanoplastics in an aqueous environment. Subsequently, the nanoplastics were recognized by the signal molecule ferrocene via the hydrophobic interaction and determined by differential pulse voltammetry. Our sandwich-type detection depends on both electronegativity and hydrophobicity of nanoplastics, which make the method applicable for the assays of packages made of widely commercialized polystyrene (PS), polypropylene (PP), polyethylene (PE), and polyamide (PA). The method displays different sensitivities to above four nanoplastics but the same dynamic range from 1 to 100 µg·L-1. Based on it, the nanoplastics released from several typical food packages were assayed. Teabags were revealed with significant nanoplastic release, while instant noodle boxes, paper cups, and take-out boxes release slightly. The good recoveries in nanoplastic-spiked samples confirm the accuracy and applicability of this method. This work provides a sensitive, low-cost, and simple method without complicated instruments and pretreatment, which is of great significance for the determination of nanoplastics released from food packages.


Asunto(s)
Nanopartículas del Metal , Contaminantes Químicos del Agua , Oro , Interacciones Hidrofóbicas e Hidrofílicas , Metalocenos , Microplásticos , Nylons , Plásticos , Polietileno , Polipropilenos , Poliestirenos/química , Electricidad Estática , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA