Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Pharmacol Toxicol ; 64: 191-209, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37506331

RESUMEN

Traditionally, chemical toxicity is determined by in vivo animal studies, which are low throughput, expensive, and sometimes fail to predict compound toxicity in humans. Due to the increasing number of chemicals in use and the high rate of drug candidate failure due to toxicity, it is imperative to develop in vitro, high-throughput screening methods to determine toxicity. The Tox21 program, a unique research consortium of federal public health agencies, was established to address and identify toxicity concerns in a high-throughput, concentration-responsive manner using a battery of in vitro assays. In this article, we review the advancements in high-throughput robotic screening methodology and informatics processes to enable the generation of toxicological data, and their impact on the field; further, we discuss the future of assessing environmental toxicity utilizing efficient and scalable methods that better represent the corresponding biological and toxicodynamic processes in humans.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Toxicología , Animales , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Toxicología/métodos
2.
Proc Natl Acad Sci U S A ; 121(23): e2403796121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38809710

RESUMEN

Olfactory receptors (Olfr) are G protein-coupled receptors that are normally expressed on olfactory sensory neurons to detect volatile chemicals or odorants. Interestingly, many Olfrs are also expressed in diverse tissues and function in cell-cell recognition, migration, and proliferation as well as immune responses and disease processes. Here, we showed that many Olfr genes were expressed in the mouse spleen, linked to Plasmodium yoelii genetic loci significantly, and/or had genome-wide patterns of LOD scores (GPLSs) similar to those of host Toll-like receptor genes. Expression of specific Olfr genes such as Olfr1386 in HEK293T cells significantly increased luciferase signals driven by IFN-ß and NF-κB promoters, with elevated levels of phosphorylated TBK1, IRF3, P38, and JNK. Mice without Olfr1386 were generated using the CRISPR/Cas9 method, and the Olfr1386-/- mice showed significantly lower IFN-α/ß levels and longer survival than wild-type (WT) littermates after infection with P. yoelii YM parasites. Inhibition of G protein signaling and P38 activity could affect cyclic AMP-responsive element promoter-driven luciferase signals and IFN-ß mRNA levels in HEK293T cells expressing the Olfr1386 gene, respectively. Screening of malaria parasite metabolites identified nicotinamide adenine dinucleotide (NAD) as a potential ligand for Olfr1386, and NAD could stimulate IFN-ß responses and phosphorylation of TBK1 and STAT1/2 in RAW264.7 cells. Additionally, parasite RNA (pRNA) could significantly increase Olfr1386 mRNA levels. This study links multiple Olfrs to host immune response pathways, identifies a candidate ligand for Olfr1386, and demonstrates the important roles of Olfr1386 in regulating type I interferon (IFN-I) responses during malaria parasite infections.


Asunto(s)
Interferón Tipo I , Malaria , Plasmodium yoelii , Receptores Odorantes , Animales , Ratones , Malaria/inmunología , Malaria/parasitología , Malaria/metabolismo , Humanos , Células HEK293 , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Ratones Noqueados , Transducción de Señal , Ratones Endogámicos C57BL
3.
J Asian Nat Prod Res ; 26(1): 38-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190257

RESUMEN

Guided by 1H NMR spectroscopic experiments using the characteristic enol proton signals as probes, three pairs of new tautomeric cinnamoylphloroglucinol-monoterpene adducts (1-3) were isolated from the buds of Cleistocalyx operculatus. Their structures with absolute configurations were established by spectroscopic analysis, modified Mosher's method, and quantum chemical electronic circular dichroism calculation. Compounds 1-3 represent a novel class of cinnamoylphloroglucinol-monoterpene adducts featuring an unusual C-4-C-1' linkage between 2,2,4-trimethyl-cinnamyl-ß-triketone and modified linear monoterpenoid motifs. Notably, compounds 1-3 exhibited significant in vitro antiviral activity against respiratory syncytial virus (RSV).


Asunto(s)
Syzygium , Syzygium/química , Monoterpenos/química , Espectroscopía de Resonancia Magnética , Antivirales/química , Estructura Molecular
4.
Molecules ; 29(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893511

RESUMEN

The opioid crisis in the United States is a significant public health issue, with a nearly threefold increase in opioid-related fatalities between 1999 and 2014. In response to this crisis, society has made numerous efforts to mitigate its impact. Recent advancements in understanding the structural intricacies of the κ opioid receptor (KOR) have improved our knowledge of how opioids interact with their receptors, triggering downstream signaling pathways that lead to pain relief. This review concentrates on the KOR, offering crucial structural insights into the binding mechanisms of both agonists and antagonists to the receptor. Through comparative analysis of the atomic details of the binding site, distinct interactions specific to agonists and antagonists have been identified. These insights not only enhance our understanding of ligand binding mechanisms but also shed light on potential pathways for developing new opioid analgesics with an improved risk-benefit profile.


Asunto(s)
Analgésicos Opioides , Receptores Opioides kappa , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/química , Humanos , Analgésicos Opioides/química , Analgésicos Opioides/farmacología , Animales , Sitios de Unión , Ligandos , Transducción de Señal/efectos de los fármacos , Unión Proteica , Relación Estructura-Actividad , Antagonistas de Narcóticos/química , Dolor/tratamiento farmacológico , Dolor/metabolismo
5.
Toxicol Appl Pharmacol ; 473: 116600, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321325

RESUMEN

Pesticides include a diverse class of toxic chemicals, often having numerous modes of actions when used in agriculture against targeted organisms to control insect infestation, halt unwanted vegetation, and prevent the spread of disease. In this study, the in vitro assay activity of pesticides within the Tox21 10K compound library were examined. The assays in which pesticides showed significantly more activities than non-pesticide chemicals revealed potential targets and mechanisms of action for pesticides. Furthermore, pesticides that showed promiscuous activity against many targets and cytotoxicity were identified, which warrant further toxicological evaluation. Several pesticides were shown to require metabolic activation, demonstrating the importance of introducing metabolic capacity to in vitro assays. Overall, the activity profiles of pesticides highlighted in this study can contribute to the knowledge gaps surrounding pesticide mechanisms and to the better understanding of the on- and off-target organismal effects of pesticides.


Asunto(s)
Plaguicidas , Plaguicidas/toxicidad , Bioensayo
6.
J Chem Inf Model ; 63(8): 2321-2330, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37011147

RESUMEN

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play important roles in human neurodegenerative disorders such as Alzheimer's disease. In this study, machine learning methods were applied to develop quantitative structure-activity relationship models for the prediction of novel AChE and BChE inhibitors based on data from quantitative high-throughput screening assays. The models were used to virtually screen an in-house collection of ∼360K compounds. The optimal models achieved good performance with area under the receiver operating characteristic curve values ranging from 0.83 ± 0.03 to 0.87 ± 0.01 for the prediction of AChE/BChE inhibition activity and selectivity. Experimental validation showed that the best-performing models increased the assay hit rate by several folds. We identified 88 novel AChE and 126 novel BChE inhibitors, 25% (AChE) and 53% (BChE) of which showed potent inhibitory effects (IC50 < 5 µM). In addition, structure-activity relationship analysis of the BChE inhibitors revealed scaffolds for chemistry design and optimization. In conclusion, machine learning models were shown to efficiently identify potent and selective inhibitors against AChE and BChE and novel structural series for further design and development of potential therapeutics against neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Butirilcolinesterasa , Humanos , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad , Relación Estructura-Actividad Cuantitativa , Simulación del Acoplamiento Molecular
7.
J Chem Inf Model ; 63(3): 846-855, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36719788

RESUMEN

Inappropriate use of prescription drugs is potentially more harmful in fetuses/neonates than in adults. Cytochrome P450 (CYP) 3A subfamily undergoes developmental changes in expression, such as a transition from CYP3A7 to CYP3A4 shortly after birth, which provides a potential way to distinguish medication effects on fetuses/neonates and adults. The purpose of this study was to build first-in-class predictive models for both inhibitors and substrates of CYP3A7/CYP3A4 using chemical structure analysis. Three metrics were used to evaluate model performance: area under the receiver operating characteristic curve (AUC-ROC), balanced accuracy (BA), and Matthews correlation coefficient (MCC). The performance varied for each CYP3A7/CYP3A4 inhibitor/substrate model depending on the data set type, model type, rebalancing method, and specific feature set. For the active inhibitor/substrate data set, the optimal models achieved AUC-ROC values ranging from 0.77 ± 0.01 to 0.84 ± 0.01. For the selective inhibitor/substrate data set, the optimal models achieved AUC-ROC values ranging from 0.72 ± 0.02 to 0.79 ± 0.04. The predictive power of the optimal models was validated by compounds with known potencies as CYP3A7/CYP3A4 inhibitors or substrates. In addition, we identified structural features significant for CYP3A7/CYP3A4 selective or common inhibitors and substrates. In summary, the top performing models can be further applied as a tool to rapidly evaluate the safety and efficacy of new drugs separately for fetuses/neonates and adults. The significant structural features could guide the design of new therapeutic drugs as well as aid in the optimization of existing medicine for fetuses/neonates.


Asunto(s)
Citocromo P-450 CYP3A , Recién Nacido , Adulto , Humanos , Citocromo P-450 CYP3A/metabolismo , Área Bajo la Curva
8.
Proc Natl Acad Sci U S A ; 117(28): 16567-16578, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32606244

RESUMEN

Malaria infection induces complex and diverse immune responses. To elucidate the mechanisms underlying host-parasite interaction, we performed a genetic screen during early (24 h) Plasmodium yoelii infection in mice and identified a large number of interacting host and parasite genes/loci after transspecies expression quantitative trait locus (Ts-eQTL) analysis. We next investigated a host E3 ubiquitin ligase gene (March1) that was clustered with interferon (IFN)-stimulated genes (ISGs) based on the similarity of the genome-wide pattern of logarithm of the odds (LOD) scores (GPLS). March1 inhibits MAVS/STING/TRIF-induced type I IFN (IFN-I) signaling in vitro and in vivo. However, in malaria-infected hosts, deficiency of March1 reduces IFN-I production by activating inhibitors such as SOCS1, USP18, and TRIM24 and by altering immune cell populations. March1 deficiency increases CD86+DC (dendritic cell) populations and levels of IFN-γ and interleukin 10 (IL-10) at day 4 post infection, leading to improved host survival. T cell depletion reduces IFN-γ level and reverse the protective effects of March1 deficiency, which can also be achieved by antibody neutralization of IFN-γ. This study reveals functions of MARCH1 (membrane-associated ring-CH-type finger 1) in innate immune responses and provides potential avenues for activating antimalaria immunity and enhancing vaccine efficacy.


Asunto(s)
Malaria/inmunología , Plasmodium yoelii/fisiología , Linfocitos T/inmunología , Ubiquitina-Proteína Ligasas/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Interacciones Huésped-Parásitos , Humanos , Inmunidad Innata , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Malaria/enzimología , Malaria/genética , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasmodium yoelii/inmunología , Ubiquitina-Proteína Ligasas/genética
9.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108204

RESUMEN

The United States is experiencing the most profound and devastating opioid crisis in history, with the number of deaths involving opioids, including prescription and illegal opioids, continuing to climb over the past two decades. This severe public health issue is difficult to combat as opioids remain a crucial treatment for pain, and at the same time, they are also highly addictive. Opioids act on the opioid receptor, which in turn activates its downstream signaling pathway that eventually leads to an analgesic effect. Among the four types of opioid receptors, the µ subtype is primarily responsible for the analgesic cascade. This review describes available 3D structures of the µ opioid receptor in the protein data bank and provides structural insights for the binding of agonists and antagonists to the receptor. Comparative analysis on the atomic details of the binding site in these structures was conducted and distinct binding interactions for agonists, partial agonists, and antagonists were observed. The findings in this article deepen our understanding of the ligand binding activity and shed some light on the development of novel opioid analgesics which may improve the risk benefit balance of existing opioids.


Asunto(s)
Analgésicos Opioides , Receptores Opioides , Humanos , Analgésicos Opioides/metabolismo , Analgésicos , Dolor , Sitios de Unión , Receptores Opioides mu/metabolismo
10.
Toxicol Appl Pharmacol ; 454: 116250, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150479

RESUMEN

Drug-induced liver injury (DILI) and cardiotoxicity (DICT) are major adverse effects triggered by many clinically important drugs. To provide an alternative to in vivo toxicity testing, the U.S. Tox21 consortium has screened a collection of ∼10K compounds, including drugs in clinical use, against >70 cell-based assays in a quantitative high-throughput screening (qHTS) format. In this study, we compiled reference compound lists for DILI and DICT and compared the potential of Tox21 assay data with chemical structure information in building prediction models for human in vivo hepatotoxicity and cardiotoxicity. Models were built with four different machine learning algorithms (e.g., Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Support Vector Machine) and model performance was evaluated by calculating the area under the receiver operating characteristic curve (AUC-ROC). Chemical structure-based models showed reasonable predictive power for DILI (best AUC-ROC = 0.75 ± 0.03) and DICT (best AUC-ROC = 0.83 ± 0.03), while Tox21 assay data alone only showed better than random performance. DILI and DICT prediction models built using a combination of assay data and chemical structure information did not have a positive impact on model performance. The suboptimal predictive performance of the assay data is likely due to insufficient coverage of an adequately predictive number of toxicity mechanisms. The Tox21 consortium is currently expanding coverage of biological response space with additional assays that probe toxicologically important targets and under-represented pathways that may improve the prediction of in vivo toxicity such as DILI and DICT.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Teorema de Bayes , Cardiotoxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Ensayos Analíticos de Alto Rendimiento , Humanos
11.
Chemistry ; 28(50): e202201421, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-35766989

RESUMEN

Detecting the formation of new chemical bonds in high-throughput synthesis is limited by the efficiency and scalability of reaction product detection, as conventional methods for isolating product from reaction mixtures are time consuming and labor intensive. Here, we report a miniaturizable purification method that enables the rapid, high-throughput isolation of quaternary ammonium-tagged products from reaction mixtures with excellent purity using inexpensive equipment that easily can be set up in a typical organic chemistry laboratory. This novel purification technique enabled us to establish a high-throughput reaction discovery platform. We validated this platform in a screen of 1536 reactions, and one previously unreported transformation was identified.

12.
J Chem Inf Model ; 62(11): 2659-2669, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35653613

RESUMEN

To deliver more therapeutics to more patients more quickly and economically is the ultimate goal of pharmaceutical researchers. The advent and rapid development of artificial intelligence (AI), in combination with other powerful computational methods in drug discovery, makes this goal more practical than ever before. Here, we describe a new strategy, retro drug design, or RDD, to create novel small-molecule drugs from scratch to meet multiple predefined requirements, including biological activity against a drug target and optimal range of physicochemical and ADMET properties. The molecular structure was represented by an atom typing based molecular descriptor system, optATP, which was further transformed to the space of loading vectors from principal component analysis. Traditional predictive models were trained over experimental data for the target properties using optATP and shallow machine learning methods. The Monte Carlo sampling algorithm was then utilized to find the solutions in the space of loading vectors that have the target properties. Finally, a deep learning model was employed to decode molecular structures from the solutions. To test the feasibility of the algorithm, we challenged RDD to generate novel kinase inhibitors from random numbers with five different ADMET properties optimized at the same time. The best Tanimoto similarity score between the generated valid structures and the available 4,314 kinase inhibitors was < 0.50, indicating a high extent of novelty of the generated compounds. From the 3,040 structures that met all six target properties, 20 were selected for synthesis and experimental measurement of inhibition activity over 97 representative kinases and the ADMET properties. Fifteen and eight compounds were determined to be hits or strong hits, respectively. Five of the six strong kinase inhibitors have excellent experimental ADMET properties. The results presented in this paper illustrate that RDD has the potential to significantly improve the current drug discovery process.


Asunto(s)
Inteligencia Artificial , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Humanos , Aprendizaje Automático , Estructura Molecular
13.
Arch Toxicol ; 96(7): 1975-1987, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35435491

RESUMEN

Currently, approximately 80,000 chemicals are used in commerce. Most have little-to-no toxicity information. The U.S. Toxicology in the 21st Century (Tox21) program has conducted a battery of in vitro assays using a quantitative high-throughput screening (qHTS) platform to gain toxicity information on environmental chemicals. Due to technical challenges, standard methods for providing xenobiotic metabolism could not be applied to qHTS assays. To address this limitation, we screened the Tox21 10,000-compound (10K) library, with concentrations ranging from 2.8 nM to 92 µM, using a p53 beta-lactamase reporter gene assay (p53-bla) alone or with rat liver microsomes (RLM) or human liver microsomes (HLM) supplemented with NADPH, to identify compounds that induce p53 signaling after biotransformation. Two hundred and seventy-eight compounds were identified as active under any of these three conditions. Of these 278 compounds, 73 gave more potent responses in the p53-bla assay with RLM, and 2 were more potent in the p53-bla assay with HLM compared with the responses they generated in the p53-bla assay without microsomes. To confirm the role of metabolism in the differential responses, we re-tested these 75 compounds in the absence of NADPH or with heat-attenuated microsomes. Forty-four compounds treated with RLM, but none with HLM, became less potent under these conditions, confirming the role of RLM in metabolic activation. Further evidence of biotransformation was obtained by measuring the half-life of the parent compounds in the presence of microsomes. Together, the data support the use of RLM in qHTS for identifying chemicals requiring biotransformation to induce biological responses.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Proteína p53 Supresora de Tumor , Activación Metabólica , Animales , Ensayos Analíticos de Alto Rendimiento/métodos , Microsomas Hepáticos , NADP , Ratas , Transducción de Señal
14.
Anal Chem ; 93(24): 8423-8431, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34110797

RESUMEN

Major advances have been made to improve the sensitivity of mass analyzers, spectral quality, and speed of data processing enabling more comprehensive proteome discovery and quantitation. While focus has recently begun shifting toward robust proteomics sample preparation efforts, a high-throughput proteomics sample preparation is still lacking. We report the development of a highly automated universal 384-well plate sample preparation platform with high reproducibility and adaptability for extraction of proteins from cells within a culture plate. Digestion efficiency was excellent in comparison to a commercial digest peptide standard with minimal sample loss while improving sample preparation throughput by 20- to 40-fold (the entire process from plated cells to clean peptides is complete in ∼300 min). Analysis of six human cell types, including two primary cell samples, identified and quantified ∼4,000 proteins for each sample in a single high-performance liquid chromatography (HPLC)-tandem mass spectrometry injection with only 100-10K cells, thus demonstrating universality of the platform. The selected protein was further quantified using a developed HPLC-multiple reaction monitoring method for HeLa digests with two heavy labeled internal standard peptides spiked in. Excellent linearity was achieved across different cell numbers indicating a potential for target protein quantitation in clinical research.


Asunto(s)
Proteoma , Proteómica , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas , Reproducibilidad de los Resultados
15.
Drug Metab Dispos ; 49(9): 822-832, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34183376

RESUMEN

Cytochrome P450 enzymes are responsible for the metabolism of >75% of marketed drugs, making it essential to identify the contributions of individual cytochromes P450 to the total clearance of a new candidate drug. Overreliance on one cytochrome P450 for clearance levies a high risk of drug-drug interactions; and considering that several human cytochrome P450 enzymes are polymorphic, it can also lead to highly variable pharmacokinetics in the clinic. Thus, it would be advantageous to understand the likelihood of new chemical entities to interact with the major cytochrome P450 enzymes at an early stage in the drug discovery process. Typical screening assays using human liver microsomes do not provide sufficient information to distinguish the specific cytochromes P450 responsible for clearance. In this regard, we experimentally assessed the metabolic stability of ∼5000 compounds for the three most prominent xenobiotic metabolizing human cytochromes P450, i.e., CYP2C9, CYP2D6, and CYP3A4, and used the data sets to develop quantitative structure-activity relationship models for the prediction of high-clearance substrates for these enzymes. Screening library included the NCATS Pharmaceutical Collection, comprising clinically approved low-molecular-weight compounds, and an annotated library consisting of drug-like compounds. To identify inhibitors, the library was screened against a luminescence-based cytochrome P450 inhibition assay; and through crossreferencing hits from the two assays, we were able to distinguish substrates and inhibitors of these enzymes. The best substrate and inhibitor models (balanced accuracies ∼0.7), as well as the data used to develop these models, have been made publicly available (https://opendata.ncats.nih.gov/adme) to advance drug discovery across all research groups. SIGNIFICANCE STATEMENT: In drug discovery and development, drug candidates with indiscriminate cytochrome P450 metabolic profiles are considered advantageous, since they provide less risk of potential issues with cytochrome P450 polymorphisms and drug-drug interactions. This study developed robust substrate and inhibitor quantitative structure-activity relationship models for the three major xenobiotic metabolizing cytochromes P450, i.e., CYP2C9, CYP2D6, and CYP3A4. The use of these models early in drug discovery will enable project teams to strategize or pivot when necessary, thereby accelerating drug discovery research.


Asunto(s)
Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Desarrollo de Medicamentos/métodos , Inhibidores Enzimáticos , Biocatálisis , Descubrimiento de Drogas/métodos , Interacciones Farmacológicas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Humanos , Inactivación Metabólica , Tasa de Depuración Metabólica , Relación Estructura-Actividad Cuantitativa
16.
Chem Res Toxicol ; 34(2): 495-506, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33347312

RESUMEN

Drug-induced liver injury (DILI) is a crucial factor in determining the qualification of potential drugs. However, the DILI property is excessively difficult to obtain due to the complex testing process. Consequently, an in silico screening in the early stage of drug discovery would help to reduce the total development cost by filtering those drug candidates with a high risk to cause DILI. To serve the screening goal, we apply several computational techniques to predict the DILI property, including traditional machine learning methods and graph-based deep learning techniques. While deep learning models require large training data to tune huge model parameters, the DILI data set only contains a few hundred annotated molecules. To alleviate the data scarcity problem, we propose a property augmentation strategy to include massive training data with other property information. Extensive experiments demonstrate that our proposed method significantly outperforms all existing baselines on the DILI data set by obtaining a 81.4% accuracy using cross-validation with random splitting, 78.7% using leave-one-out cross-validation, and 76.5% using cross-validation with scaffold splitting.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Aprendizaje Profundo , Modelos Químicos , Preparaciones Farmacéuticas/química , Humanos , Estructura Molecular
17.
Chem Res Toxicol ; 34(2): 412-421, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33251791

RESUMEN

The mechanisms leading to organ level toxicities are poorly understood. In this study, we applied an integrated approach to deduce the molecular targets and biological pathways involved in chemically induced toxicity for eight common human organ level toxicity end points (carcinogenicity, cardiotoxicity, developmental toxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, reproductive toxicity, and skin toxicity). Integrated analysis of in vitro assay data, molecular targets and pathway annotations from the literature, and toxicity-molecular target associations derived from text mining, combined with machine learning techniques, were used to generate molecular targets for each of the organ level toxicity end points. A total of 1516 toxicity-related genes were identified and subsequently analyzed for biological pathway coverage, resulting in 206 significant pathways (p-value <0.05), ranging from 3 (e.g., developmental toxicity) to 101 (e.g., skin toxicity) for each toxicity end point. This study presents a systematic and comprehensive analysis of molecular targets and pathways related to various in vivo toxicity end points. These molecular targets and pathways could aid in understanding the biological mechanisms of toxicity and serve as a guide for the design of suitable in vitro assays for more efficient toxicity testing. In addition, these results are complementary to the existing adverse outcome pathway (AOP) framework and can be used to aid in the development of novel AOPs. Our results provide abundant testable hypotheses for further experimental validation.


Asunto(s)
Contaminantes Ambientales/análisis , Aprendizaje Automático , Pruebas de Toxicidad , Contaminantes Ambientales/efectos adversos , Humanos
18.
Chem Res Toxicol ; 34(2): 541-549, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33513003

RESUMEN

Selecting a model in predictive toxicology often involves a trade-off between prediction performance and explainability: should we sacrifice the model performance to gain explainability or vice versa. Here we present a comprehensive study to assess algorithm and feature influences on model performance in chemical toxicity research. We conducted over 5000 models for a Tox21 bioassay data set of 65 assays and ∼7600 compounds. Seven molecular representations as features and 12 modeling approaches varying in complexity and explainability were employed to systematically investigate the impact of various factors on model performance and explainability. We demonstrated that end points dictated a model's performance, regardless of the chosen modeling approach including deep learning and chemical features. Overall, more complex models such as (LS-)SVM and Random Forest performed marginally better than simpler models such as linear regression and KNN in the presented Tox21 data analysis. Since a simpler model with acceptable performance often also is easy to interpret for the Tox21 data set, it clearly was the preferred choice due to its better explainability. Given that each data set had its own error structure both for dependent and independent variables, we strongly recommend that it is important to conduct a systematic study with a broad range of model complexity and feature explainability to identify model balancing its predictivity and explainability.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Aprendizaje Automático , Preparaciones Farmacéuticas/química , Bases de Datos Factuales , Humanos , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa
19.
Chem Res Toxicol ; 34(2): 189-216, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33140634

RESUMEN

Since 2009, the Tox21 project has screened ∼8500 chemicals in more than 70 high-throughput assays, generating upward of 100 million data points, with all data publicly available through partner websites at the United States Environmental Protection Agency (EPA), National Center for Advancing Translational Sciences (NCATS), and National Toxicology Program (NTP). Underpinning this public effort is the largest compound library ever constructed specifically for improving understanding of the chemical basis of toxicity across research and regulatory domains. Each Tox21 federal partner brought specialized resources and capabilities to the partnership, including three approximately equal-sized compound libraries. All Tox21 data generated to date have resulted from a confluence of ideas, technologies, and expertise used to design, screen, and analyze the Tox21 10K library. The different programmatic objectives of the partners led to three distinct, overlapping compound libraries that, when combined, not only covered a diversity of chemical structures, use-categories, and properties but also incorporated many types of compound replicates. The history of development of the Tox21 "10K" chemical library and data workflows implemented to ensure quality chemical annotations and allow for various reproducibility assessments are described. Cheminformatics profiling demonstrates how the three partner libraries complement one another to expand the reach of each individual library, as reflected in coverage of regulatory lists, predicted toxicity end points, and physicochemical properties. ToxPrint chemotypes (CTs) and enrichment approaches further demonstrate how the combined partner libraries amplify structure-activity patterns that would otherwise not be detected. Finally, CT enrichments are used to probe global patterns of activity in combined ToxCast and Tox21 activity data sets relative to test-set size and chemical versus biological end point diversity, illustrating the power of CT approaches to discern patterns in chemical-activity data sets. These results support a central premise of the Tox21 program: A collaborative merging of programmatically distinct compound libraries would yield greater rewards than could be achieved separately.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/toxicidad , Pruebas de Toxicidad , Ensayos Analíticos de Alto Rendimiento , Humanos , Estados Unidos , United States Environmental Protection Agency
20.
Bioorg Med Chem Lett ; 40: 127906, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33689873

RESUMEN

Zika virus has emerged as a potential threat to human health globally. A previous drug repurposing screen identified the approved anthelminthic drug niclosamide as a small molecule inhibitor of Zika virus infection. However, as antihelminthic drugs are generally designed to have low absorption when dosed orally, the very limited bioavailability of niclosamide will likely hinder its potential direct repurposing as an antiviral medication. Here, we conducted SAR studies focusing on the anilide and salicylic acid regions of niclosamide to improve physicochemical properties such as microsomal metabolic stability, permeability and solubility. We found that the 5-bromo substitution in the salicylic acid region retains potency while providing better drug-like properties. Other modifications in the anilide region with 2'-OMe and 2'-H substitutions were also advantageous. We found that the 4'-NO2 substituent can be replaced with a 4'-CN or 4'-CF3 substituents. Together, these modifications provide a basis for optimizing the structure of niclosamide to improve systemic exposure for application of niclosamide analogs as drug lead candidates for treating Zika and other viral infections. Indeed, key analogs were also able to rescue cells from the cytopathic effect of SARS-CoV-2 infection, indicating relevance for therapeutic strategies targeting the COVID-19 pandemic.


Asunto(s)
Antivirales/farmacología , Niclosamida/análogos & derivados , Niclosamida/farmacología , SARS-CoV-2/efectos de los fármacos , Virus Zika/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Sitios de Unión , Chlorocebus aethiops , Estabilidad de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Niclosamida/metabolismo , Unión Proteica , Ratas , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad , Células Vero , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA