Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(8): e18290, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588015

RESUMEN

Growth hormone inducible transmembrane protein (GHITM), one member of Bax inhibitory protein-like family, has been rarely studied, and the clinical importance and biological functions of GHITM in kidney renal clear cell carcinoma (KIRC) still remain unknown. In the present study, we found that GHITM was downregulated in KIRC. Aberrant GHITM downregulation related to clinicopathological feature and unfavourable prognosis of KIRC patients. GHITM overexpression inhibited KIRC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, GHITM overexpression could induce the downregulation of Notch1, which acts as an oncogene in KIRC. Overexpression of Notch1 effectively rescued the inhibitory effect induced by GHITM upregulation. More importantly, GHITM could regulate PD-L1 protein abundance and ectopic overexpression of GHITM enhanced the antitumour efficiency of PD-1 blockade in KIRC, which provided new insights into antitumour therapy. Furthermore, we also showed that YY1 could decrease GHITM level via binding to its promoter. Taken together, our study revealed that GHITM was a promising therapeutic target for KIRC, which could modulate malignant phenotype and sensitivity to PD-1 blockade of renal cancer cells via Notch signalling pathway.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Riñón , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Fenotipo , Receptor de Muerte Celular Programada 1
2.
J Integr Plant Biol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860597

RESUMEN

The development of flowers in soybean (Glycine max) is essential for determining the yield potential of the plant. Gene silencing pathways are involved in modulating flower development, but their full elucidation is still incomplete. Here, we conducted a forward genetic screen and identified an abnormal flower mutant, deformed floral bud1-1 (Gmdfb1-1), in soybean. We mapped and identified the causal gene, which encodes a member of the armadillo (ARM)-repeat superfamily. Using small RNA sequencing (sRNA-seq), we found an abnormal accumulation of small interfering RNAs (siRNAs) and microRNA (miRNAs) in the Gmdfb1 mutants. We further demonstrated that GmDFB1 interacts with the RNA exosome cofactor SUPER KILLER7 (GmSKI7). Additionally, GmDFB1 interacts with the PIWI domain of ARGONAUTE 1 (GmAGO1) to inhibit the cleavage efficiency on the target genes of sRNAs. The enhanced gene silencing mediated by siRNA and miRNA in the Gmdfb1 mutants leads to the downregulation of their target genes associated with flower development. This study revealed the crucial role of GmDFB1 in regulating floral organ identity in soybean probably by participating in two distinct gene silencing pathways.

3.
Fish Shellfish Immunol ; 142: 109085, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722440

RESUMEN

Myeloid differentiation factor 88 (MyD88) is a universal adaptor protein and plays an important role in the signal transduction of Toll like receptors (TLR) family. In this study, the MyD88 gene from the Haliotis diversicolor (hdMyD88) was identified. The full-length cDNA of hdMyD88 has a 1927 base pairs (bp), with an open reading frame of 1314 bp encoding 437 amino acids including a death domain (DD) at the N-terminus and TIR domain at the C-terminus which are typical features of MyD88 family proteins. Three conserved boxes are also found in the hdMyD88, which are similar to MyD88 in vertebrates. The expression levels of hdMyD88 mRNA at different early embryonic developmental stages of abalone were measured by qPCR revealed that their constitutive expression at all developmental stages analyzed with the considerably highest values at 8 cell stage and the lowest level at the trochosphere stage. Additionally, the mRNA expression of hdMyD88 decreased significantly (P < 0.05) after MyD88-dsRNA soak in the stage of trochosphere and veliger than EGFP-dsRNA group and blank control group. Whole embryo in situ hybridization showed that the positive signals of hdMyD88 were in visceral mass of trochophore larvae and veliger larvae. These results indicate hdMyD88 may could respond to pathogenic infection and may play an important role in early innate immunity in the process of abalone larval development.


Asunto(s)
Gastrópodos , Factor 88 de Diferenciación Mieloide , Animales , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Secuencia de Aminoácidos , Transducción de Señal , ARN Mensajero/metabolismo
4.
Appl Microbiol Biotechnol ; 107(13): 4301-4309, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37256328

RESUMEN

Total antioxidant capacity (TAC) is currently considered as a vital indicator of food quality in antioxidant ability and attracts much attention for human healthcare. It is thus of great significance to realize the accurate and rapid detection of TAC in foods. Herein, we have constructed a preferable hybrid nanozyme based on the mesoporous silica-stabilized CuO composited Fe3O4 nanoparticles (Fe3O4@MSNs@CuO, FMC NPs), which possess the enhanced peroxidase (POD)-like activity via cascade response for specific and sensitive determination of TAC in fruit foods. The results showed the hybrid nanozyme displayed a remarkable POD-like activity, excellent selectivity and sensitivity, and the limit of detection (LOD) of the colorimetric sensor was 6.13 mM with the concentration range from 10 to 45 mM. Therefore, the fabricated hybrid nanozyme can be regarded as an effective biosensor for the evaluation of antioxidant quality in fruit foods in future. KEY POINTS: • The stabilized bimetallic nanozyme was constructed for TAC analysis in fruits. • The hybrid nanozyme possessed the enhanced POD-like activity by cascading effects. • The nanozyme was an effective biosensor for antioxidant quality evaluation in fruits.


Asunto(s)
Antioxidantes , Frutas , Humanos , Antioxidantes/análisis , Frutas/química , Dióxido de Silicio , Cobre , Colorimetría/métodos , Peróxido de Hidrógeno , Peroxidasa
5.
Int Orthop ; 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37442823

RESUMEN

PURPOSE: Hip vessel examination provides key information on many hip-related pediatric diseases, and it has an important role in the evaluation of femoral head (FH) blood supply and diagnosis of avascular necrosis (AVN). The aim of this study was to investigate the feasibility of MR-enhanced high-resolution three-dimensional water-selective cartilage (3D-WATSc) sequence in visualizing the vessels of the hip joint in children. PATIENTS AND METHODS: Children with hip disease were randomly enrolled prospectively at our hospital from January 2021 to August 2022. We performed our institution's hip MRI protocol and enhanced high-resolution 3D-WATSc sequence. The 3D-WATSc images were reconstructed and analyzed, and images of the normal hip were categorized into grades 0-3. The abnormal hip images were compared with those of the normal side using the χ2 test. RESULTS: Twenty-four patients with unilateral hip abnormalities were included in this study. The cartilaginous vascular canal and ossification centre vessels of normal FHs were observed in 18 patients (75%) and met the grade 3 standard. An abnormal cartilaginous canal was observed in 16 patients (67%); meanwhile, 18 patients (75%) had abnormal extrachondral vessels. Comparison of high-resolution 3D-WATSc images with those of the normal side provided effective abnormal vascular information in 95.8% of patients. CONCLUSIONS: Enhanced high-resolution 3D-WATSc can visualize the blood vessels of the hip in children. This may provide a new method for the vascular study of various pediatric hip diseases.

6.
J Sci Food Agric ; 103(1): 308-316, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35864589

RESUMEN

BACKGROUND: Frozen tilapia fillet has become a leading aquatic product. High drip loss, dry and fibrous mouthfeel, and an unappealing appearance are its main problems. It was hypothesized that light salting could improve the quality, and that the preparation conditions would affect the storage stability of frozen tilapia fillets. RESULTS: The quality changes of lightly salted tilapia fillets were evaluated during frozen storage, and the underlying mechanisms were studied from the physicochemicaland microstructural perspectives. Though the salt content was 1.5% in all samples,the amount of ice crystals in frozen tissues decreased with the descending water content and freezing point (P < 0.05). No intracellular voids were observed in the samples prepared under proper salting conditions, and the myofibers were plump and smooth after freezing-thawing, which contributed to the high water-holding capacity of lightly salted fillets. After 28 days,the water-binding capacity of the salted groups was 14.69%-18.62% higher than that of their unsalted counterparts (P < 0.05). The reduced protein solubility in the salted fillets was likely to have occurred because the solubilized and unfolded proteins interacted more easily during frozen storage. The oxidation degree of myofibrillar proteins was also affected by salting condition, and the fillets with less oxidized sulfhydryl groups maintained high springiness after 28 days of frozen storage. CONCLUSION: The salting condition of 9% NaCl solution for 1 h was recommended for the preparation of lightly salted fillets from freshwater fish, taking into account quality, processing efficiency, and storage stability. The enhanced water-holding capacity and texture of lightly salted tilapia fillets were attributed to modified physicochemical and microstructural properties. These results could provide a scientific basis for the processing and storage of high-quality, frozen, lightly salted fillets from freshwater fish. © 2022 Society of Chemical Industry.


Asunto(s)
Cíclidos , Tilapia , Animales , Cloruro de Sodio/química , Congelación , Agua
7.
BMC Cancer ; 22(1): 995, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123627

RESUMEN

BACKGROUND: Nuclear receptor subfamily 1 group H member 4 (NR1H4) have been reported in various cancer types, however, little is known about the clinical values and biological function in clear cell Renal cell carcinoma (ccRCC). METHODS: The expression pattens of NR1H4 in ccRCC were investigated in clinical specimens, cell lines and publicly­available databases. Cell Counting Kit-8 (CCK-8), colony formation, 5-ethynyl-2' -deoxyuridine (EdU), transwell and cell wound healing assays were performed to assess the biological functions of NR1H4 in 786-O ccRCC cells. Gene set enrichment analysis (GSEA), Flow Cytometry, quantitative real-time PCR (qRT-PCR), western blot and immunofluorescence were performed to explore the molecular mechanism of NR1H4 in ccRCC. We explored the early diagnostic value, prognostic value, genetic mutation and DNA methylation of NR1H4 by a comprehensive bioinformatics analysis based on the data published in the following databases: The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Kaplan-Meier Plotter, Gene Expression Profiling Interactive Analysis (GEPIA), UNIVERSITY OF CALIFORNIA SANTA CRUZ Xena (UCSC Xena), cBio Cancer Genomics Portal, MethSurv, SurvivalMeth and The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN). Its correlation with tumor-infiltrating immune cells in ccRCC was analyzed by Tumor Immune Estimation Resource 2.0 (TIMER2.0) and Tumor Immune System Interactions Database (TISIDB). RESULTS: In this study, NR1H4 was found to be highly expressed in ccRCC tissues and ccRCC cell lines. Knockdown of NR1H4 significantly suppressed cancer cell proliferation, migration and invasion. Mechanistically, tumor-associated signaling pathways were enriched in the NR1H4 overexpression group and si-NR1H4 could induce the downregulation of Cyclin E2 (CCNE2). By bioinformatics analysis, NR1H4 was identified as highly expressed in stage I ccRCC with a high diagnostic accuracy (area under the receiver operating characteristic curve > 0.8). Genetic alteration and DNA methylation of NR1H4 were significantly associated with prognosis in ccRCC patients. Moreover, NR1H4 expression associated with immune cell infiltration levels in ccRCC, which provides a new idea for immunotherapy. CONCLUSIONS: Our study indicated that NR1H4 might be a potential tumor biomarker and therapeutic target for ccRCC which could promote cancer cell proliferation, migration and invasion via regulating CCNE2.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Receptores Citoplasmáticos y Nucleares/metabolismo , Biomarcadores de Tumor/genética , Carcinogénesis , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Ciclinas , Desoxiuridina , Humanos , Neoplasias Renales/patología
8.
Fish Shellfish Immunol ; 120: 507-514, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34920131

RESUMEN

The lack of high-throughput sequencing data makes the research progress of Heliocidaris crassispina slow. Therefore, we used PacBio single-molecule real-time sequencing to generate the first full-length transcriptome. Here, 31,181 isoforms were obtained, with an average length of 2383.20 and a N50 length of 2732 bp. Meanwhile, 764 alternative splicing (AS) events, 5098 long-noncoding RNAs (LncRNAs), 6978 simple sequence repeats (SSRs), and 950 hypothetical transcript factors (TFs) were identified. Moreover, five key innate immune pattern recognition receptors (PRRs), including toll-like receptor (TLR), NACHT domain and leucine-rich repeat (NLR), scavenger receptor cysteine-rich (SRCR), peptidoglycan recognition proteins (PGRP), and gram-negative binding proteins (GNBP), were searched in the transcriptome. In addition, 37 isoforms enriched in KEGG and GO immune systems were also detected. The study provid abundant data support for the current research on H. crassispina.


Asunto(s)
Anthocidaris , Transcriptoma , Empalme Alternativo , Animales , Anthocidaris/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Isoformas de Proteínas , ARN Largo no Codificante
9.
Waste Manag Res ; 40(9): 1424-1432, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35212575

RESUMEN

With the development of the electric vehicle (EV), vehicle end-of-life (EOL) management has become a significant challenge. This study sets two EV sales scenarios (low and high), compares the impact of two battery replacement methods (buying a new vehicle or replacing the battery) on future EOL EV production, and predicts the difference in the amount of EOL EV battery production under two probability functions (normal and Weibull's distributions). The results show that when the EV power battery is retired and the vehicle owner chooses to buy a new vehicle, the predicted scrap quantity under low sales and high sales (HS) scenarios in 2030 is 4.3 and 5.3 million, respectively. Replacing the battery and continuing to use the vehicle will mean fewer EOL vehicles are generated. Considering the construction of an EOL EV battery recycling management system in China is still in the exploratory period, it is necessary to encourage vehicle owners to replace the battery and continue to use the vehicle. Under a HS scenario, the predicted number of EOL EV batteries in 2030 is 3.8-7.4 million. In the next 10 years, the issue of EV recycling should be raised to the same level as the issue of EV popularisation.


Asunto(s)
Suministros de Energía Eléctrica , Reciclaje , China , Comercio , Electricidad , Reciclaje/métodos
10.
Phytother Res ; 35(6): 2890-2901, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33368785

RESUMEN

In recent years, glucan has become one of the hotspots in life science research. It is widely concerned because of its advantages, such as good immune regulation, antitumor, antivirus, hypoglycemic and lipid-lowering effects, antioxidation, antiaging, low toxicity, and high efficiency. At present, there are still two problems in the pharmacodynamics of glucans. Firstly, compared with other drugs used in clinic, most of the glucans still lack information about the mechanism of action between glucans and corresponding ligands in vivo. Secondly, the research on the structure-activity relationship of glucans is still slow. Herein, the structure-activity relationships of glucans were reviewed. The relationship between structure and biological activity is very important for the development of new glucan drugs.


Asunto(s)
Productos Biológicos/farmacología , Glucanos/farmacología , Animales , Organismos Acuáticos , Productos Biológicos/química , Hongos , Glucanos/química , Humanos , Estructura Molecular , Plantas , Relación Estructura-Actividad , beta-Glucanos/química , beta-Glucanos/farmacología
11.
Mol Plant Microbe Interact ; 33(6): 798-807, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32186464

RESUMEN

In soybean (Glycine max)-rhizobium interactions, the type III secretion system (T3SS) of rhizobium plays a key role in regulating host specificity. However, the lack of information on the role of T3SS in signaling networks limits our understanding of symbiosis. Here, we conducted an RNA sequencing analysis of three soybean chromosome segment substituted lines, one female parent and two derived lines with different chromosome-substituted segments of wild soybean and opposite nodulation patterns. By analyzing chromosome-linked differentially expressed genes in the substituted segments and quantitative trait loci (QTL)-assisted selection in the substituted-segment region, genes that may respond to type III effectors to mediate plant immunity-related signaling were identified. To narrow down the number of candidate genes, QTL assistant was used to identify the candidate region consistent with the substituted segments. Furthermore, one candidate gene, GmDRR1, was identified in the substituted segment. To investigate the role of GmDRR1 in symbiosis establishment, GmDRR1-overexpression and RNA interference soybean lines were constructed. The nodule number increased in the former compared with wild-type soybean. Additionally, the T3SS-regulated effectors appeared to interact with the GmDDR1 signaling pathway. This finding will allow the detection of T3SS-regulated effectors involved in legume-rhizobium interactions.


Asunto(s)
Genes de Plantas , Glycine max/genética , Rhizobium/fisiología , Simbiosis , Sistemas de Secreción Tipo III , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ARN , Transducción de Señal , Glycine max/microbiología
12.
J Enzyme Inhib Med Chem ; 34(1): 1590-1596, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31581863

RESUMEN

Oral colon administration system has become a new method to treat intestinal diseases. The implementation of colon drug delivery system is restricted by many aspects, including physical and chemical properties, drug delivery mode, gastrointestinal physiological factors, and so on. Delivery methods to overcome these challenges revolve around the mechanisms of drug delivery, including the use of rational dosage forms to avoid the complex pH environment, and the prevention of drug release and absorption in the upper digestive tract.


Asunto(s)
Colon , Portadores de Fármacos/química , Administración Oral , Animales , Colon/metabolismo , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Portadores de Fármacos/administración & dosificación , Composición de Medicamentos/métodos , Liberación de Fármacos , Microbioma Gastrointestinal , Humanos , Concentración de Iones de Hidrógeno , Enfermedades Intestinales/tratamiento farmacológico , Polímeros/química
13.
BMC Infect Dis ; 14: 623, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25421019

RESUMEN

BACKGROUND: Clinical differentiation of influenza from dengue and other febrile illnesses (OFI) is difficult, and available rapid diagnostic tests have limited sensitivity. METHODS: We conducted a retrospective study to compare clinical and laboratory findings between (i) influenza and dengue and (ii) influenza and OFI. RESULTS: Of 849 enrolled patients, the mean time between illness onset and hospital presentation was 1.7, 3.7, and 3 days for influenza, dengue, and OFI, respectively. Among pediatric patients (≤18 years) (445 influenza, 24 dengue, and 130 OFI), we identified absence of rashes, no leukopenia, and no marked thrombocytopenia (platelet counts <100 × 10(9) cells/L) as predictors to distinguish influenza from dengue, whereas rhinorrhea, malaise, sore throat, and mild thrombocytopenia (platelet counts 100-149 × 10(9)/L) were predictors that differentiated influenza from OFI. Among adults (>18 years) (81 influenza, 124 dengue, and 45 OFI), no leukopenia and no marked thrombocytopenia distinguished influenza from dengue, while rhinorrhea and malaise differentiated influenza from OFI. A diagnostic algorithm developed to distinguish influenza from dengue using rash, leukopenia, and marked thrombocytopenia showed >90% sensitivity to identify influenza in pediatric patients. CONCLUSIONS: This study identified simple clinical and laboratory parameters that can assist clinicians to distinguish influenza from dengue and OFI. These findings may help clinicians diagnose influenza and facilitate appropriate management of affected patients, particularly in resource-poor settings.


Asunto(s)
Dengue/diagnóstico , Fiebre/virología , Gripe Humana/diagnóstico , Adolescente , Adulto , Niño , Preescolar , Diagnóstico Diferencial , Pruebas Diagnósticas de Rutina , Servicio de Urgencia en Hospital , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
14.
RSC Adv ; 14(29): 20884-20897, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38957578

RESUMEN

Quantum dots (QDs), with their unique optical and physical properties, have revolutionized the field of biological imaging, providing researchers with tools to explore cellular processes and molecular interactions in unprecedented detail. This review explores the diverse properties of QDs, emphasizing their application in biological imaging and addressing both their advantages and challenges. We discuss the developments in QD technology that have facilitated their integration into bioimaging, highlighting the role of surface modifications in enhancing their biocompatibility and functionality. The varied applications of QDs in both in vitro and in vivo imaging settings are examined, showcasing their capacity to deliver brighter, more stable, and multiplexed imaging solutions compared to traditional fluorescent dyes. Furthermore, we delve into the challenges associated with QD use, particularly concerns regarding their potential toxicity and long-term effects on biological systems, and explore ongoing research aimed at mitigating these issues. Finally, we discuss future directions in QD technology, anticipating advancements that will further solidify their role in biological imaging and open up new avenues for scientific exploration.

15.
Front Psychol ; 15: 1190571, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650900

RESUMEN

Under the rapid development of e-commerce, offline brick-and-mortar stores have been severely impacted. However, the importance of the visual, sensory and even psychological experience in the apparel industry makes offline stores still irreplaceable. The impact on consumers' visual experience cannot be ignored and is a significant influencing factor in determining consumers' psychological change and purchase intention. Especially for fast fashion brands which pursue low costs, visual marketing strategies is a cost-effective marketing tool to enhance the visual experience. In this paper, by adapting SOR theory and using fuzzy set qualitative comparative analysis (fsQCA) research method, 15 fast fashion apparel brands and 374 valid questionnaires are adapted in China to explore not only the influence of individual dimensions in visual marketing on consumers' purchase intention, but also the action of multi-dimensional combinations. The research finds that: (1) there are two driving paths for high consumers' purchase intention. The first path is a combination of high clarity of arrangement and low display density; the second path is a combination of low light intensity, high clarity of arrangement, high tonal harmony and high window appeal. (2) There are also two paths that drive non-high consumers' purchase intentions, and they are asymmetrically related to the paths that drive high consumers' purchase intentions. The findings of this study help to provide direction and suggestions for offline visual marketing strategies of fast fashion apparel brands to increase consumers' psychological perception and purchase intention through a range of visual presentation techniques.

16.
J Laparoendosc Adv Surg Tech A ; 34(4): 323-328, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38330407

RESUMEN

Objective: The aim of this study is to compare the precision and applicability of the Zhongshan (ZS) score against the radius, exophytic/endophytic, nearness, anterior/posterior, and location (RENAL) score in forecasting perioperative outcomes during laparoscopic partial nephrectomy (LPN). Materials and Methods: We retrospectively analyzed data from 99 renal cancer patients who underwent LPN between January 2017 and August 2023. Patients were scored and categorized based on both the ZS and RENAL scores. The study then compared perioperative outcomes across these groups and further investigated the correlation between ZS and RENAL scores and overall complication rates. Results: LPN was successfully accomplished in 94 patients, whereas 5 patients necessitated conversion to open or radical surgery. The high-risk group, according to the ZS score, manifested more warm ischemic time (WIT) than the low-risk group (P = .007). Furthermore, the incidence of overall complications escalated with increase in the ZS score grade (P = .045). A higher RENAL score corresponded to a greater risk of conversion to open or radical treatment (P = .012). Correlation analyses revealed associations between both ZS and RENAL scores and overall complications. The RENAL score also correlated with changes in blood creatinine values, while the ZS score was associated with WIT (all P < .05). In the univariate analysis, both ZS and RENAL scores were substantial factors for the occurrence of total complications (P = .029 and P = .027, respectively), but they were not statistically significant in the multivariate analysis. The receiver operating characteristic curves suggested that both individual and combined ZS and RENAL scores held predictive potential for the onset of overall complications (area under the curve = 0.652, 0.660, and 0.676, respectively). Conclusions: Compared with the RENAL score, the ZS score provides a more comprehensive assessment of tumor complexity in patients undergoing LPN. Integrating these two scores could potentially improve the accuracy of predicting surgical risks.


Asunto(s)
Neoplasias Renales , Laparoscopía , Humanos , Radio (Anatomía)/patología , Estudios Retrospectivos , Nefrectomía , Neoplasias Renales/cirugía , Neoplasias Renales/patología , Resultado del Tratamiento
17.
Discov Oncol ; 15(1): 190, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802631

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is one of the most aggressive urological malignancies and a highly immunogenic cancer. Yet, its pathogenesis is still not fully understood. This study analyzed the role of the miR-320 family in ccRCC using bioinformatics algorithms and a series of in vitro experiments. miR-4429 was found to be significantly down-regulated in ccRCC tissues and cell lines, while overexpression of miR-4429 significantly inhibited renal cancer cell proliferation, migration, and invasion in vitro. In addition, the UALCAN database, immunohistochemistry, and protein blotting results showed that CD274 expression was up-regulated in ccRCC tissues and correlated with higher histologic grading. Dual luciferase assay indicated that CD274 was a direct target of miR-4429. Overexpression of miR-4429 in 786-O, Caki-2 cells significantly inhibited CD274 expression. KEGG results indicated that the potential target function of miR-4429 was associated with the PI3K/AKT signaling pathway, and protein blotting verified the results. In summary, this data shows that miR-4429 targets CD274 and inhibits ccRCC proliferation, migration, and invasion by regulating PI3K/AKT signaling, thus potentially providing a promising therapeutic target and prognostic biomarker for renal cell carcinoma patients.

18.
Adv Sci (Weinh) ; : e2401789, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874478

RESUMEN

Acquired resistance represents a critical clinical challenge to molecular targeted therapies such as tyrosine kinase inhibitors (TKIs) treatment in hepatocellular carcinoma (HCC). Therefore, it is urgent to explore new mechanisms and therapeutics that can overcome or delay resistance. Here, a US Food and Drug Administration (FDA)-approved pleuromutilin antibiotic is identified that overcomes sorafenib resistance in HCC cell lines, cell line-derived xenograft (CDX) and hydrodynamic injection mouse models. It is demonstrated that lefamulin targets interleukin enhancer-binding factor 3 (ILF3) to increase the sorafenib susceptibility of HCC via impairing mitochondrial function. Mechanistically, lefamulin directly binds to the Alanine-99 site of ILF3 protein and interferes with acetyltransferase general control non-depressible 5 (GCN5) and CREB binding protein (CBP) mediated acetylation of Lysine-100 site, which disrupts the ILF3-mediated transcription of mitochondrial ribosomal protein L12 (MRPL12) and subsequent mitochondrial biogenesis. Clinical data further confirm that high ILF3 or MRPL12 expression is associated with poor survival and targeted therapy efficacy in HCC. Conclusively, this findings suggest that ILF3 is a potential therapeutic target for overcoming resistance to TKIs, and lefamulin may be a novel combination therapy strategy for HCC treatment with sorafenib and regorafenib.

19.
Colloids Surf B Biointerfaces ; 238: 113888, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599077

RESUMEN

Gallium (Ga) is a well-known liquid metals (LMs) that possesses the features, such as fluidity, low viscosity, high electrical and thermal conductivity, and relative low toxicity. Owing to the weak interactions between Ga atoms, Ga LMs can be adopted for fabrication of various Ga LMs-based functional materials via ultrasonic treatment and mechanical grinding. Moreover, many organic compounds/polymers can be coated on the surface of LMs-based materials through coordination between oxidized outlayers of Ga LMs and functional groups of organic components. Over the past decades, different strategies have been reported for synthesizing Ga LMs-based functional materials and their biomedical applications have been intensively investigated. Although some review articles have published over the past few years, a concise review is still needed to advance the latest developments in biomedical fields. The main context can be majorly divided into two parts. In the first section, various strategies for fabrication of Ga LMs-based functional materials via top-down strategies were introduced and discussed. Following that, biomedical applications of Ga LMs-based functional materials were summarized and design Ga LMs-based functional materials with enhanced performance for cancer photothermal therapy (PTT) and PTT combined therapy were highlighted. We trust this review article will be beneficial for scientists to comprehend this promising field and greatly advance future development for fabrication of other Ga LMs-based functional materials with better performance for biomedical applications.


Asunto(s)
Galio , Galio/química , Humanos , Neoplasias/tratamiento farmacológico , Terapia Fototérmica/métodos , Animales
20.
Environ Sci Pollut Res Int ; 30(16): 46711-46726, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36723842

RESUMEN

China faces tough challenges in the process of low-carbon transformation. To determine whether China can achieve its new 2030 carbon peaking and carbon intensity reduction commitments, accurate prediction of China's CO2 emissions is vital. In this paper, the random forest (RF) model was used to screen 26 carbon emission influencing factors, and seven indicators were selected as key variables for prediction. Subsequently, a three-layer back propagation (BP) neural network was constructed to forecast China's CO2 emissions and intensity from 2020 to 2040 under the 13th Five-Year Plan, 14th Five-Year Plan, energy optimization, technology breakthrough, and dual control scenarios. The results showed that energy structure factors have the most significant impact on China's CO2 emissions, followed by technology level, and economic development factors are no longer the main drivers. Under the 14th Five-Year Plan scenario, China can achieve its carbon peaking on time, reaching 10,434.082 Mt CO2 emissions in 2030. Although the new commitment to intensity reduction (over 65%) under this scenario cannot be achieved, the 14th Five-Year Plan can bring about 73.359 and 539.710 Mt of CO2 reduction in 2030 and 2040 respectively, compared to the 13th Five-Year Plan. Under the technology breakthrough and dual control scenarios, China will meet its new commitments ahead of schedule, with the dual control scenario being the optimal pathway for CO2 emissions to peak at 9860.08 Mt in 2025. It is necessary for Chinese policy makers to adjust their current strategic planning, such as accelerating the transformation of energy structure and increasing investment in R&D to achieve breakthroughs in green technologies.


Asunto(s)
Dióxido de Carbono , Carbono , Dióxido de Carbono/análisis , Carbono/análisis , Bosques Aleatorios , Redes Neurales de la Computación , China , Desarrollo Económico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA