Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142203

RESUMEN

Temperature is an important environmental factor affecting the growth and development of silkworm (Bombyx mori). To analyze the effect of intestinal microbes on silkworm in response to a high-temperature environment, this study used a combination of high throughput sequencing and biochemical assays to detect silkworm intestinal microbes treated with high temperature for 72 h. The results show that high temperature affects the intestinal microbes of silkworm and that there are sex differences, specifically, females were more sensitive. The changes in the metabolism and transport ability of silkworm intestinal tissues under high temperature are related to the intestinal microbes. High temperatures may affect the intestinal microbes of silkworms, regulating the activity of related digestive enzymes and substance transport in the intestine, thereby affecting the silkworm's digestion and absorption of nutrients, and ultimately affecting growth and development.


Asunto(s)
Bombyx , Animales , Bombyx/química , Femenino , Crecimiento y Desarrollo , Intestinos , Larva , Masculino , Temperatura
2.
Plants (Basel) ; 13(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931133

RESUMEN

Macadamia nut plantings in China are expanding year by year. In order to breed and promote superior varieties, this study analyzed the effects of different rootstocks and scions on the survival rate of grafted seedlings, and then selected the best substrate composition for plant growth. The results showed that the survival rate of the HAES788 variety as rootstock and Guire No. 1 as scion was the highest, reaching 96%. The optimal grafting time in December was better than that in March. Furthermore, among 16 substrate formulations, T12, T13, T15, and T16 had advantages of agglomerated soil and more well-developed root systems compared to the CK made of loess. The plant height, stem diameter, leaf length, leaf width, and dry weight of the aboveground and underground parts of the grafted seedlings planted in these substrate formulations were significantly higher than those plants planted in the CK. In addition, the substrate formulations T12, T13, T15, and T16 significantly improved the organic matter, total nitrogen, and total potassium content of the substrate soils, but little improvement was observed for total phosphorus content after 13 months. Overall, macadamia grafting times are best in December, with HAES788 and Guire No. 1 being the best rootstock and scion. The optimal substrate formulations are T12, T13, T15, and T16. This study provides a solid foundation for the production of high-quality macadamia plants.

3.
Adv Sci (Weinh) ; : e2401009, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751156

RESUMEN

Biodegradable plastics, hailed for their environmental friendliness, may pose unforeseen risks as they undergo gastrointestinal degradation, forming oligomer nanoplastics. Despite this, the influence of gastrointestinal degradation on the potential human toxicity of biodegradable plastics remains poorly understood. To this end, the impact of the murine in vivo digestive system is investigated on the biotransformation, biodistribution, and toxicity of PLA polymer and PLA oligomer MPs. Through a 28-day repeated oral gavage study in mice, it is revealed that PLA polymer and oligomer microplastics undergo incomplete and complete degradation, respectively, in the gastrointestinal tract. Incompletely degraded PLA polymer microplastics transform into oligomer nanoplastics, heightening bioavailability and toxicity, thereby exacerbating overall toxic effects. Conversely, complete degradation of PLA oligomer microplastics reduces bioavailability and mitigates toxicity, offering a potential avenue for toxicity reduction. Additionally, the study illuminates shared targets and toxicity mechanisms in Parkinson's disease-like neurotoxicity induced by both PLA polymer and PLA oligomer microplastics. This involves the upregulation of MICU3 in midbrains, leading to neuronal mitochondrial calcium overload. Notably, neurotoxicity is mitigated by inhibiting mitochondrial calcium influx with MCU-i4 or facilitating mitochondrial calcium efflux with DBcAMP in mice. These findings enhance the understanding of the toxicological implications of biodegradable microplastics on human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA