Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Ther ; 30(2): 932-946, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34547464

RESUMEN

N6-methyladenosine (m6A) mRNA modification plays critical roles in various biological events and is involved in multiple complex diseases. However, the role of m6A modification in autophagy in nonalcoholic fatty liver disease (NAFLD) remains largely unknown. Here, we report that m6A modification was increased in livers of NAFLD mouse models and in free fatty acid (FFA)-treated hepatocytes, and the abnormal m6A modification was attributed to the upregulation of methyltransferase like 3 (METTL3) induced by lipotoxicity. Knockdown of METTL3 promoted hepatic autophagic flux and clearance of lipid droplets (LDs), while overexpression of METTL3 inhibited these processes. Mechanistically, METTL3 directly bound to Rubicon mRNA and mediated the m6A modification, while YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), as a partner of METTL3, interacted with the m6A-marked Rubicon mRNA and promoted its stability. Subsequently, RUBICON inhibited autophagosome-lysosome fusion and further blocked clearance of LDs. Taken together, our results showed a critical role of METTL3 and YTHDF1 in regulating lipid metabolism via the autophagy pathway and provided a novel insight into m6A mRNA methylation in NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Adenosina/metabolismo , Animales , Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Proteínas de Unión al ARN
2.
J Mol Cell Cardiol ; 138: 291-303, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31751569

RESUMEN

OBJECTIVE: Sick sinus syndrome (SSS) is associated with loss of HCN4 (hyperpolarization-activated cyclic nucleotide-gated potassium channel 4) function in the cardiac conduction system. The underlying mechanism for SSS remains elusive. This study is to investigate how mitochondrial oxidative stress induces HCN4 downregulation associated with in sick sinus syndrome. METHODS AND RESULTS: Trx2lox/lox mice were crossed with α-myosin heavy chain (α-Mhc)-Cre and Hcn4-CreERT2 deleter mice to generate Trx2 deletion mice in the whole heart (Trx2cKO) and in the conduction system (Trx2ccsKO), respectively. Echocardiography was applied to measure hemodynamics and heart rhythm. Histological analyses, gene profiling and chromatin immunoprecipitation were performed to define the mechanism by which thioredoxin-2 (Trx2) regulates HCN4 expression and cardiac function. Trx2cKO mice displayed dilated cardiomyopathy, low heart rate, and atrial ventricular block (AVB) phenotypes. Immunofluorescence revealed that HCN4 expression was specifically reduced within the sinoatrial node in Trx2cKO mice. Interestingly, Trx2ccsKO mice displayed low heart rate and AVB without dilated cardiomyopathy. Both mRNA and protein levels of HCN4 were reduced in the sinoatrial node, suggesting transcriptional HCN4 regulation upon Trx2 deletion. ChIP indicated that the binding of MEF2 to the HCN4 enhancer was not altered by Trx2 deletion; however, histone 3 acetylation at the MEF2 binding site was decreased, and expression of histone deacetylase 4 (HDAC4) was elevated following Trx2 deletion. Moreover, HDAC4 binding to the HCN4 enhancer was mediated by MEF2. Mitochondrial ROS were increased by Trx2 deletion and importantly, mitochondria-specific ROS scavenger MitoTEMPO suppressed HDAC4 elevation, HCN4 reduction, and sinus bradycardia in Trx2ccsKO mice. CONCLUSION: In the conduction system, Trx2 is critical for maintaining HCN4-mediated normal heart rate. Loss of Trx2 reduces HCN4 expression via a mitochondrial ROS-HDAC4-MEF2C pathway and subsequently induces sick sinus syndrome in mice.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo , Síndrome del Seno Enfermo/genética , Síndrome del Seno Enfermo/patología , Tiorredoxinas/metabolismo , Animales , Bradicardia/complicaciones , Bradicardia/metabolismo , Bradicardia/patología , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Elementos de Facilitación Genéticos/genética , Histona Desacetilasas/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Factores de Transcripción MEF2/metabolismo , Ratones Noqueados , Modelos Biológicos , Estrés Oxidativo/genética , Fenotipo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Síndrome del Seno Enfermo/complicaciones , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/patología
3.
Exp Dermatol ; 28(5): 528-535, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-28887854

RESUMEN

Impaired wound healing accompanies severe cell apoptosis in diabetic patients. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was known to have effects on promoting growth and anti-apoptosis for cells. We aimed to determine the actual levels of TIMP-1 and cell apoptosis in: (i) the biopsies of diabetic and non-diabetic foot tissue and (ii) the human fibroblasts with or without treatments of advanced glycation end-products (AGEs). Next, we aimed to determine the improved levels of cell apoptosis and wound healing after the treatments of either active protein of TIMP-1 or in vivo expression of gene therapy vector-mediated TIMP-1 in both the human fibroblasts and the animal model of diabetic rats. The levels of TIMP-1 were significantly reduced in diabetic skin tissues and in AGEs-treated fibroblasts. Both AGEs-treated cells were effectively protected from apoptosis by active protein of TIMP-1 at appropriate dose level. So did the induced in vivo TIMP-1 expression after gene delivery. Similar effects were also found on the significant improvement of impaired wound healing in diabetic rats. We concluded that TIMP-1 improved wound healing through its anti-apoptotic effect. Treatments with either active protein TIMP-1 or TIMP-1 gene therapy delivered in local wound sites may be used as a strategy for accelerating diabetic wound healing.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental/metabolismo , Regulación de la Expresión Génica , Inhibidor Tisular de Metaloproteinasa-1/fisiología , Cicatrización de Heridas , Animales , Biopsia , Estudios de Casos y Controles , Caspasa 3/metabolismo , Pie Diabético/metabolismo , Pie Diabético/patología , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Técnicas de Transferencia de Gen , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Técnicas In Vitro , Masculino , Ratas , Ratas Sprague-Dawley
4.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35202005

RESUMEN

Brown adipose tissue (BAT), a crucial heat-generating organ, regulates whole-body energy metabolism by mediating thermogenesis. BAT inflammation is implicated in the pathogenesis of mitochondrial dysfunction and impaired thermogenesis. However, the link between BAT inflammation and systematic metabolism remains unclear. Herein, we use mice with BAT deficiency of thioredoxin-2 (TRX2), a protein that scavenges mitochondrial reactive oxygen species (ROS), to evaluate the impact of BAT inflammation on metabolism and thermogenesis and its underlying mechanism. Our results show that BAT-specific TRX2 ablation improves systematic metabolic performance via enhancing lipid uptake, which protects mice from diet-induced obesity, hypertriglyceridemia, and insulin resistance. TRX2 deficiency impairs adaptive thermogenesis by suppressing fatty acid oxidation. Mechanistically, loss of TRX2 induces excessive mitochondrial ROS, mitochondrial integrity disruption, and cytosolic release of mitochondrial DNA, which in turn activate aberrant innate immune responses in BAT, including the cGAS/STING and the NLRP3 inflammasome pathways. We identify NLRP3 as a key converging point, as its inhibition reverses both the thermogenesis defect and the metabolic benefits seen under nutrient overload in BAT-specific Trx2-deficient mice. In conclusion, we identify TRX2 as a critical hub integrating oxidative stress, inflammation, and lipid metabolism in BAT, uncovering an adaptive mechanism underlying the link between BAT inflammation and systematic metabolism.


Asunto(s)
Resistencia a la Insulina , Tejido Adiposo Pardo/metabolismo , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Dieta Alta en Grasa , Metabolismo Energético , Inflamación/genética , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Termogénesis/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
5.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33315085

RESUMEN

White adipose tissues (WAT) play crucial roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to hepatic insulin resistance and type 2 diabetes mellitus (T2DM). However, the mechanisms underlying these alterations remain unknown. By analyzing the transcriptome landscape in human adipocytes based on available RNA-seq datasets from lean, obese, and T2DM patients, we reveal elevated mitochondrial reactive oxygen species (ROS) pathway and NF-κB signaling with altered fatty acid metabolism in T2DM adipocytes. Mice with adipose-specific deletion of mitochondrial redox Trx2 develop hyperglycemia, hepatic insulin resistance, and hepatic steatosis. Trx2-deficient WAT exhibited excessive mitophagy, increased inflammation, and lipolysis. Mechanistically, mitophagy was induced through increasing ROS generation and NF-κB-dependent accumulation of autophagy receptor p62/SQSTM1, which recruits damaged mitochondria with polyubiquitin chains. Importantly, administration of ROS scavenger or NF-κB inhibitor ameliorates glucose and lipid metabolic disorders and T2DM progression in mice. Taken together, this study reveals a previously unrecognized mechanism linking mitophagy-mediated adipose inflammation to T2DM with hepatic insulin resistance.


Asunto(s)
Tejido Adiposo/patología , Diabetes Mellitus Tipo 2/patología , Inflamación/patología , Resistencia a la Insulina , Hígado/patología , Mitofagia , Adipocitos/metabolismo , Adipocitos/ultraestructura , Animales , Dieta Alta en Grasa , Metabolismo Energético , Hígado Graso/patología , Eliminación de Gen , Marcación de Gen , Gluconeogénesis , Homeostasis , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/patología , Lipogénesis , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , FN-kappa B/metabolismo , Estrés Oxidativo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1 , Transducción de Señal , Tiorredoxinas/metabolismo
6.
Front Oncol ; 11: 625452, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33954109

RESUMEN

Prostate cancer (PCa) is one of the most frequently diagnosed cancers in males worldwide. Approximately 25% of all patients experience biochemical recurrence (BCR) after radical prostatectomy (RP) and BCR indicates increased risk for metastasis and castration resistance. PCa patients with highly glycolytic tumors have a worse prognosis. Thus, this study aimed to explore glycolysis-based predictive biomarkers for BCR. Expression data and clinical information of PCa samples were retrieved from three publicly available datasets. One from The Cancer Genome Atlas (TCGA) dataset was used as the training cohort, and two from the Gene Expression Omnibus (GEO) dataset (GSE54460 and GSE70769) were used as validation cohorts. Using the training cohort, univariate Cox regression survival analysis, robust likelihood-based survival model, and stepwise multiply Cox analysis were sequentially applied to explore predictive glycolysis-related candidates. A five-gene risk score was then constructed based on the Cox coefficient as the following: (-0.8367*GYS2) + (0.3448*STMN1) + (0.3595*PPFIA4) + (-0.1940*KDELR3) + (0.4779*ABCB6). Receiver operating characteristic curve (ROC) analysis was used to identify the optimal cut-off point, and patients were divided into low risk and high risk groups. Kaplan-Meier analysis revealed that high risk group had significantly shorter BCR free survival time as compared with that in low risk group in training and validation cohorts. In conclusion, our data support the glycolysis-based five-gene signature as a novel and robust signature for predicting BCR of PCa patients.

7.
Int J Endocrinol ; 2020: 3909610, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32089682

RESUMEN

BACKGROUND: Ten-eleven translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) promoting demethylation in cells. However, the expression pattern and biologic significance of TET in papillary thyroid carcinoma (PTC) remain unclear. This study aimed to elucidate the biological functions of TET1 and the miRNA and mRNA expression levels in PTC cells with downregulated TET1. METHODS: The expression of the TET family in 49 PTC tissues and corresponding tumor-adjacent tissues, as well as PTC cell lines (BCPAP, K1, and TPC-1) and the normal thyroid epithelial cell line (Nthy-ori 3-1), were detected using quantitative real-time polymerase chain reaction. The 5hmC level was detected in PTC tissues and cell lines using immunohistochemistry and dot blot assay, respectively. After silencing the TET1 gene with siRNAs in BCPAP and TPC-1 cells, cell proliferation was detected using EdU assay. Transwell assay was used to investigate cell migration and invasion. miRNA and mRNA expression arrays were conducted in TET1-depleted BCPAP cells. RESULTS: The expression level of TET1 decreased in PTC tissues and cell lines and was consistent with the reduction in the 5hmC level. The knockdown of the TET1 gene with siRNAs in BCPAP and TPC-1 cells, cell proliferation was detected using EdU assay. Transwell assay was used to investigate cell migration and invasion. miRNA and mRNA expression arrays were conducted in TET1-depleted BCPAP cells. WNT4, FZD4, CDK6, MCF2L, and EDN1 was upregulated as potential target genes of dysregulated miRNAs. CONCLUSION: The study showed that TET1 dysfunction inhibited the migration and invasion of BCPAP cells and might have a potential role in the pathogenesis of PTC.

8.
Thyroid ; 28(9): 1162-1173, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29882471

RESUMEN

BACKGROUND: Increasing evidence indicates that microRNA dysfunction is involved in the pathogenesis and progression of cancer. MicroRNA-222 (miR-222) is upregulated in papillary thyroid carcinoma (PTC). However, the role of miR-222 in invasion and metastasis of PTC remains unknown. This study investigated the function of miR-222 and its underlying mechanism in the progression of PTC. METHODS: The expression of miR-222 was detected by quantitative reverse transcription polymerase chain reaction, and its correlation with various clinical characteristics was analyzed. The role of miR-222 in PTC cell migration ability was assessed with Transwell® assays and wound-healing assays in both TPC-1 and K1 cells. By using bioinformatics analyses and dual-luciferase 3'-UTR reporter assays, the study identified the direct target of miR-222 and the downstream pathways of PTC. Further, the study confirmed the role of miR-222 in promoting PTC distant metastasis in vivo by injecting TPC-1 cells into nude mice. RESULTS: This study confirmed that miR-222 was upregulated in PTC tissues compared to adjacent thyroid tissues and that it correlated with aggressive cancer phenotypes. The results indicate that ectopic miR-222 enhanced cell migration and invasion of thyroid cancer cells in vitro and distant pulmonary metastases in vivo. Protein phosphatase 2 regulatory subunit B alpha (PPP2R2A), a tumor suppressor, was identified as a direct target of miR-222 through the 3'-UTR of PPP2R2A. Restoring PPP2R2A expression led to the attenuation of migration and invasion in miR-222-overexpressing thyroid cancer cells. Moreover, we found that miR-222 promoted invasion and metastasis partly through the AKT signaling pathway. CONCLUSIONS: Taken together, the results suggest that miR-222 promotes tumor invasion and metastasis in thyroid cancer by targeting PPP2R2A. Thus, miR-222 could serve as a potential diagnostic biomarker, as well as an attractive therapeutic tool for thyroid cancer.


Asunto(s)
MicroARNs/metabolismo , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Proteína Fosfatasa 2/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Adulto , Línea Celular Tumoral , Movimiento Celular/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Proteína Fosfatasa 2/genética , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo
9.
Int J Endocrinol ; 2017: 6180425, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740507

RESUMEN

BACKGROUND: MicroRNA (miRNA) dysregulation was commonly seen in papillary thyroid carcinoma (PTC), and miR-195 was verified to be downregulated in PTC by the large data set analysis from The Cancer Genome Atlas (TCGA). Our study aimed to explore the biological functions and the underlying molecular mechanisms of miR-195 in PTC. METHODS: The relative expression of miR-195 and its target genes were assessed by quantitative RT-PCR assay in 38 pairs of PTC and the adjacent thyroid tissues. Assays were performed to evaluate the effect of miR-195 on the proliferation, migration, and invasion in PTC cell lines. Moreover, we searched for targets of miR-195 and explored the possible molecular pathway of miR-195 in PTC. RESULTS: We found that miR-195 was downregulated in PTC cell lines and tissues. Overexpression of miR-195 significantly inhibited cell proliferation, migration, and invasion in K1 and BCPAP cell lines. CCND1 and FGF2, which had inverse correlations with miR-195 in clinical specimens, were found to be the direct targets of miR-195. Furthermore, miR-195 might be involved in PTC tumorigenesis by suppressing the Wnt/ß-catenin signaling pathway. CONCLUSIONS: These results highlight an important role of miR-195 in the initiation and progression of PTC and implicate the potential application of miR-195 in PTC target therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA