Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Trends Genet ; 38(10): 991-995, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35637074

RESUMEN

Polyploidization and polyploidy reversal (depolyploidization) are crucial pathways to conversely alter genomic contents in organisms. Understanding the mechanisms switching between polyploidization and polyploidy reversal should broaden our knowledge of the generation of pathological polyploidy and pave a new path to prevent related diseases.


Asunto(s)
Mitosis , Poliploidía , Humanos
2.
Proc Natl Acad Sci U S A ; 119(33): e2203632119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35951651

RESUMEN

Epilepsy is a common neurological disorder, which has been linked to mutations or deletions of RNA binding protein, fox-1 homolog (Caenorhabditis elegans) 3 (RBFOX3)/NeuN, a neuronal splicing regulator. However, the mechanism of seizure mediation by RBFOX3 remains unknown. Here, we show that mice with deletion of Rbfox3 in gamma-aminobutyric acid (GABA) ergic neurons exhibit spontaneous seizures and high premature mortality due to increased presynaptic release, postsynaptic potential, neuronal excitability, and synaptic transmission in hippocampal dentate gyrus granule cells (DGGCs). Attenuating early excitatory gamma-aminobutyric acid (GABA) action by administering bumetanide, an inhibitor of early GABA depolarization, rescued premature mortality. Rbfox3 deletion reduced hippocampal expression of vesicle-associated membrane protein 1 (VAMP1), a GABAergic neuron-specific presynaptic protein. Postnatal restoration of VAMP1 rescued premature mortality and neuronal excitability in DGGCs. Furthermore, Rbfox3 deletion in GABAergic neurons showed fewer neuropeptide Y (NPY)-expressing GABAergic neurons. In addition, deletion of Rbfox3 in NPY-expressing GABAergic neurons lowered intrinsic excitability and increased seizure susceptibility. Our results establish RBFOX3 as a critical regulator and possible treatment path for epilepsy.


Asunto(s)
Proteínas de Unión al ADN , Neuronas GABAérgicas , Proteínas del Tejido Nervioso , Neuropéptido Y , Convulsiones , Proteína 1 de Membrana Asociada a Vesículas , Animales , Bumetanida/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Giro Dentado/metabolismo , Antagonistas del GABA/farmacología , Neuronas GABAérgicas/metabolismo , Eliminación de Gen , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropéptido Y/metabolismo , Convulsiones/genética , Convulsiones/metabolismo , Proteína 1 de Membrana Asociada a Vesículas/genética , Proteína 1 de Membrana Asociada a Vesículas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
3.
Mol Psychiatry ; 28(7): 2728-2736, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37131078

RESUMEN

The late 1990s were banner years in molecular neuroscience; seminal studies demonstrated that local protein synthesis, at or near synapses, was necessary for synaptic plasticity, the underlying cellular basis of learning and memory [1, 2]. The newly made proteins were proposed to "tag" the stimulated synapse, distinguishing it from naive synapses, thereby forming a cellular memory [3]. Subsequent studies demonstrated that the transport of mRNAs from soma to dendrite was linked with translational unmasking at synapses upon synaptic stimulation. It soon became apparent that one prevalent mechanism governing these events is cytoplasmic polyadenylation, and that among the proteins that control this process, CPEB, plays a central role in synaptic plasticity, and learning and memory. In vertebrates, CPEB is a family of four proteins, all of which regulate translation in the brain, that have partially overlapping functions, but also have unique characteristics and RNA binding properties that make them control different aspects of higher cognitive function. Biochemical analysis of the vertebrate CPEBs demonstrate them to respond to different signaling pathways whose output leads to specific cellular responses. In addition, the different CPEBs, when their functions go awry, result in pathophysiological phenotypes resembling specific human neurological disorders. In this essay, we review key aspects of the vertebrate CPEB proteins and cytoplasmic polyadenylation within the context of brain function.


Asunto(s)
Poliadenilación , Factores de Transcripción , Animales , Humanos , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Biosíntesis de Proteínas , Plasticidad Neuronal/fisiología
4.
J Pathol ; 258(4): 339-352, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36181299

RESUMEN

Hepatocellular carcinoma (HCC) is among the most prevalent visceral neoplasms. So far, reliable biomarkers for predicting HCC recurrence in patients undergoing surgery are far from adequate. In the aim of searching for genetic biomarkers involved in HCC development, we performed analyses of cDNA microarrays and found that the DNA repair gene NEIL3 was remarkably overexpressed in tumors. NEIL3 belongs to the Fpg/Nei protein superfamily, which contains DNA glycosylase activity required for the base excision repair for DNA lesions. Notably, the other Fpg/Nei family proteins NEIL1 and NEIL2, which have the same glycosylase activity as NEIL3, were not elevated in HCC; NEIL3 was specifically induced to participate in HCC development independently of its glycosylase activity. Using RNA-seq and invasion/migration assays, we found that NEIL3 elevated the expression of epithelial-mesenchymal transition (EMT) factors, including the E/N-cadherin switch and the transcription of MMP genes, and promoted the invasion, migration, and stemness phenotypes of HCC cells. Moreover, NEIL3 directly interacted with the key EMT player TWIST1 to enhance invasion and migration activities. In mouse orthotopic HCC studies, NEIL3 overexpression also caused a prominent E-cadherin decrease, tumor volume increase, and lung metastasis, indicating that NEIL3 led to EMT and tumor metastasis in mice. We further found that NEIL3 induced the transcription of MDR1 (ABCB1) and BRAF genes through the canonical E-box (CANNTG) promoter region, which the TWIST1 transcription factor recognizes and binds to, leading to the BRAF/MEK/ERK pathway-mediated cell proliferation as well as anti-cancer drug resistance, respectively. In the HCC cohort, the tumor NEIL3 level demonstrated a high positive correlation with disease-free and overall survival after surgery. In conclusion, NEIL3 activated the BRAF/MEK/ERK/TWIST pathway-mediated EMT and therapeutic resistances, leading to HCC progression. Targeted inhibition of NEIL3 in HCC individuals with NEIL3 induction is a promising therapeutic approach. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Hepatocelular , ADN Glicosilasas , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , ADN Glicosilasas/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factores de Transcripción Twist/metabolismo
5.
EMBO J ; 37(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30177570

RESUMEN

Expression of mitochondrial proton transporter uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) is essential for mammalian thermogenesis. While human UCP1 mRNA exists in a long form only, alternative polyadenylation creates two different isoforms in mice with 10% of UCP1 mRNA found in the long form (Ucp1L) and ~90% in the short form (Ucp1S). We generated a mouse model expressing only Ucp1S and found that it showed impaired thermogenesis due to a 60% drop in UCP1 protein levels, suggesting that Ucp1L is more efficiently translated than Ucp1S. In addition, we found that ß3 adrenergic receptor signaling promoted the translation of mouse Ucp1L and human Ucp1 in a manner dependent on cytoplasmic polyadenylation element binding protein 2 (CPEB2). CPEB2-knockout mice showed reduced UCP1 levels and impaired thermogenesis in BAT, which was rescued by ectopic expression of CPEB2. Hence, long 3'-UTR Ucp1 mRNA translation activated by CPEB2 is likely conserved and important in humans to produce UCP1 for thermogenesis.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Tejido Adiposo Pardo/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas de Unión al ARN/metabolismo , Termogénesis/fisiología , Proteína Desacopladora 1/biosíntesis , Animales , Expresión Génica Ectópica , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Proteínas de Unión al ARN/genética , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Transducción de Señal/fisiología , Proteína Desacopladora 1/genética
6.
J Neurosci ; 40(17): 3374-3384, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32229518

RESUMEN

Stress alters brain function by modifying the structure and function of neurons and astrocytes. The fine processes of astrocytes are critical for the clearance of neurotransmitters during synaptic transmission. Thus, experience-dependent remodeling of glial processes is anticipated to alter the output of neural circuits. However, the molecular mechanisms that underlie glial structural plasticity are not known. Here we show that a single exposure of male and female mice to an acute stress produced a long-lasting retraction of the lateral processes of cerebellar Bergmann glial cells. These cells express the GluA1 subunit of AMPA-type glutamate receptors, and GluA1 knockdown is known to shorten the length of glial processes. We found that stress reduced the level of GluA1 protein and AMPA receptor-mediated currents in Bergmann glial cells, and these effects were absent in mice devoid of CPEB3, a protein that binds to GluA1 mRNA and regulates GluA1 protein synthesis. Administration of a ß-adrenergic receptor blocker attenuated the reduction in GluA1, and deletion of adenylate cyclase 5 prevented GluA1 suppression. Therefore, stress suppresses GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway, and reduces the length of astrocyte lateral processes. Our results identify a novel mechanism for GluA1 subunit plasticity in non-neuronal cells and suggest a previously unappreciated role for AMPA receptors in stress-induced astrocytic remodeling.SIGNIFICANCE STATEMENT Astrocytes play important roles in synaptic transmission by extending fine processes around synapses. In this study, we showed that a single exposure to an acute stress triggered a retraction of lateral/fine processes in mouse cerebellar astrocytes. These astrocytes express GluA1, a glutamate receptor subunit known to lengthen astrocyte processes. We showed that astrocytic structural changes are associated with a reduction of GluA1 protein levels. This requires activation of ß-adrenergic receptors and is triggered by noradrenaline released during stress. We identified adenylyl cyclase 5, an enzyme that elevates cAMP levels, as a downstream effector and found that lowering GluA1 levels depends on CPEB3 proteins that bind to GluA1 mRNA. Therefore, stress regulates GluA1 protein synthesis via an adrenergic/adenylyl cyclase/CPEB3 pathway in astrocytes and remodels their fine processes.


Asunto(s)
Adenilil Ciclasas/metabolismo , Neuroglía/metabolismo , Plasticidad Neuronal/fisiología , Distrés Psicológico , Proteínas de Unión al ARN/metabolismo , Receptores AMPA/metabolismo , Transducción de Señal/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Neuroglía/citología , Neuronas/citología , Neuronas/metabolismo , Proteínas de Unión al ARN/genética , Transmisión Sináptica/fisiología
7.
FASEB J ; 34(9): 12127-12146, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32686865

RESUMEN

Alzheimer's disease (AD) is characterized by a chronic decline in cognitive function and is pathologically typified by cerebral deposition of amyloid-ß peptide (Aß). The production of Aß is mediated by sequential proteolysis of amyloid precursor protein (APP) by ß- and γ-secretases, and has been implicated as the essential determinant of AD pathology. Previous studies have demonstrated that the level of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] in the membrane may potentially modulate Aß production. Given that PI(4,5)P2 is produced by type 1 phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks), we sought to determine whether the level of PIP5K type Iα (PIP5K1A) can affect production of Aß by modulating the lipid composition of the membrane. Using a HEK-derived cell line that constitutively expresses yellow fluorescent protein-tagged APP (APP-YFP), we demonstrated that overexpression of PIP5K1A results in significant enhancement of non-amyloidogenic APP processing and a concomitant suppression of the amyloidogenic pathway, leading to a marked decrease in secreted Aß. Consistently, cells overexpressing PIP5K1A exhibited a significant redistribution of APP-YFP from endosomal compartments to the cell surface. Our findings suggest that PIP5K1A may play a critical role in governing Aß production by modulating membrane distribution of APP, and as such, the pathway may be a valuable therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ratas
8.
J Biomed Sci ; 27(1): 52, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295602

RESUMEN

BACKGROUND: Alveologenesis is the final stage of lung development to form air-exchanging units between alveoli and blood vessels. Genetic susceptibility or hyperoxic stress to perturb this complicated process can cause abnormal enlargement of alveoli and lead to bronchopulmonary dysplasia (BPD)-associated emphysema. Platelet-derived growth factor receptor α (PDGFRα) signaling is crucial for alveolar myofibroblast (MYF) proliferation and its deficiency is associated with risk of BPD, but posttranscriptional mechanisms regulating PDGFRα synthesis during lung development remain largely unexplored. Cytoplasmic polyadenylation element-binding protein 2 (CPEB2) is a sequence-specific RNA-binding protein and translational regulator. Because CPEB2-knockout (KO) mice showed emphysematous phenotypes, we investigated how CPEB2-controlled translation affects pulmonary development and function. METHODS: Respiratory and pulmonary functions were measured by whole-body and invasive plethysmography. Histological staining and immunohistochemistry were used to analyze morphology, proliferation, apoptosis and cell densities from postnatal to adult lungs. Western blotting, RNA-immunoprecipitation, reporter assay, primary MYF culture and ectopic expression rescue were performed to demonstrate the role of CPEB2 in PDGFRα mRNA translation and MYF proliferation. RESULTS: Adult CPEB2-KO mice showed emphysema-like dysfunction. The alveolar structure in CPEB2-deficient lungs appeared normal at birth but became simplified through the alveolar stage of lung development. In CPEB2-null mice, we found reduced proliferation of MYF progenitors during alveolarization, abnormal deposition of elastin and failure of alveolar septum formation, thereby leading to enlarged pulmonary alveoli. We identified that CPEB2 promoted PDGFRα mRNA translation in MYF progenitors and this positive regulation could be disrupted by H2O2, a hyperoxia-mimetic treatment. Moreover, decreased proliferating ability in KO MYFs due to insufficient PDGFRα expression was rescued by ectopic expression of CPEB2, suggesting an important role of CPEB2 in upregulating PDGFRα signaling for pulmonary alveologenesis. CONCLUSIONS: CPEB2-controlled translation, in part through promoting PDGFRα expression, is indispensable for lung development and function. Since defective pulmonary PDGFR signaling is a key feature of human BPD, CPEB2 may be a risk factor for BPD.


Asunto(s)
Proliferación Celular , Miofibroblastos/fisiología , Factor de Crecimiento Derivado de Plaquetas/genética , Biosíntesis de Proteínas , Alveolos Pulmonares/crecimiento & desarrollo , Proteínas de Unión al ARN/genética , Animales , Ratones , Ratones Noqueados , Factor de Crecimiento Derivado de Plaquetas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
9.
J Neurosci ; 36(50): 12661-12676, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27810937

RESUMEN

Cytoplasmic polyadenylation element binding protein 2 (CPEB2) is an RNA-binding protein and translational regulator. To understand the physiological function of CPEB2, we generated CPEB2 knock-out (KO) mice and found that most died within 3 d after birth. CPEB2 is highly expressed in the brainstem, which controls vital functions, such as breathing. Whole-body plethysmography revealed that KO neonates had aberrant respiration with frequent apnea. Nevertheless, the morphology and function of the respiratory rhythm generator and diaphragm neuromuscular junctions appeared normal. We found that upregulated translation of choline acetyltransferase in the CPEB2 KO dorsal motor nucleus of vagus resulted in hyperactivation of parasympathetic signaling-induced bronchoconstriction, as evidenced by increased pulmonary acetylcholine and phosphorylated myosin light chain 2 in bronchial smooth muscles. Specific deletion of CPEB2 in cholinergic neurons sufficiently caused increased apnea in neonatal pups and airway hyper-reactivity in adult mice. Moreover, inhalation of an anticholinergic bronchodilator reduced apnea episodes in global and cholinergic CPEB2-KO mice. Together, the elevated airway constriction induced by cholinergic transmission in KO neonates may account for the respiratory defect and mortality. SIGNIFICANCE STATEMENT: This study first generated and characterized cpeb2 gene-deficient mice. CPEB2-knock-out (KO) mice are born alive but most die within 3 d after birth showing no overt defects in anatomy. We found that the KO neonates showed severe apnea and altered respiratory pattern. Such respiratory defects could be recapitulated in mice with pan-neuron-specific or cholinergic neuron-specific ablation of the cpeb2 gene. Further investigation revealed that cholinergic transmission in the KO dorsal motor nucleus of vagus was overactivated because KO mice lack CPEB2-suppressed translation of the rate-limiting enzyme in the production of acetylcholine (i.e., choline acetyltransferase). Consequently, increased parasympathetic signaling leads to hyperactivated bronchoconstriction and abnormal respiration in the KO neonates.


Asunto(s)
Broncoconstricción/fisiología , Colina O-Acetiltransferasa/biosíntesis , Sistema Nervioso Parasimpático/fisiología , Proteínas de Unión al ARN/genética , Transducción de Señal/fisiología , Nervio Vago/enzimología , Animales , Broncoconstricción/efectos de los fármacos , Broncodilatadores/farmacología , Diafragma/inervación , Diafragma/fisiología , Femenino , Genotipo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso/fisiología , Unión Neuromuscular/fisiología , Sistema Nervioso Parasimpático/efectos de los fármacos , Mecánica Respiratoria/fisiología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba , Nervio Vago/efectos de los fármacos
10.
Nucleic Acids Res ; 43(19): 9393-404, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26446990

RESUMEN

Non-selenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx or GPx7) is an oxidative stress sensor that modulates the antioxidative activity of its target proteins through intermolecular disulfide bond formation. Given NPGPx's role in protecting cells from oxidative damage, identification of the oxidative stress-induced protein complexes, which forms with key stress factors, may offer novel insight into intracellular reactive oxygen species homeostasis. Here, we show that NPGPx forms a disulfide bond with the translational regulator cytoplasmic polyadenylation element-binding protein 2 (CPEB2) that results in negative regulation of hypoxia-inducible factor 1-alpha (HIF-1α) RNA translation. In NPGPx-proficient cells, high oxidative stress that disrupts this bonding compromises the association of CPEB2 with HIF-1α RNA, leading to elevated HIF-1α RNA translation. NPGPx-deficient cells, in contrast, demonstrate increased HIF-1α RNA translation under normoxia with both impaired induction of HIF-1α synthesis and blunted HIF-1α-programmed transcription following oxidative stress. Together, these results reveal a molecular mechanism for how NPGPx mediates CPEB2-controlled HIF-1α RNA translation in a redox-sensitive manner.


Asunto(s)
Proteínas Portadoras/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Estrés Oxidativo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas Portadoras/genética , Células Cultivadas , Cisteína/análisis , Disulfuros/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Ratas , Transcripción Genética
11.
EMBO J ; 31(4): 959-71, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22157746

RESUMEN

Translation of mRNA into protein proceeds in three phases: initiation, elongation, and termination. Regulated translation allows the prompt production of selective proteins in response to physiological needs and is often controlled by sequence-specific RNA-binding proteins that function at initiation. Whether the elongation phase of translation can be modulated individually by trans-acting factors to synthesize polypeptides at variable rates remains to be determined. Here, we demonstrate that the RNA-binding protein, cytoplasmic polyadenylation element binding protein (CPEB)2, interacts with the elongation factor, eEF2, to reduce eEF2/ribosome-triggered GTP hydrolysis in vitro and slow down peptide elongation of CPEB2-bound RNA in vivo. The interaction of CPEB2 with eEF2 downregulates HIF-1α RNA translation under normoxic conditions; however, when cells encounter oxidative stress, CPEB2 dissociates from HIF-1α RNA, leading to rapid synthesis of HIF-1α for hypoxic adaptation. This study delineates the molecular mechanism of CPEB2-repressed translation and presents a unique model for controlling transcript-selective translation at elongation.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , ARN/genética , Animales , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica , Ratas
12.
Nucleic Acids Res ; 42(3): e15, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24343026

RESUMEN

Increasing numbers of protein structures are solved each year, but many of these structures belong to proteins whose sequences are homologous to sequences in the Protein Data Bank. Nevertheless, the structures of homologous proteins belonging to the same family contain useful information because functionally important residues are expected to preserve physico-chemical, structural and energetic features. This information forms the basis of our method, which detects RNA-binding residues of a given RNA-binding protein as those residues that preserve physico-chemical, structural and energetic features in its homologs. Tests on 81 RNA-bound and 35 RNA-free protein structures showed that our method yields a higher fraction of true RNA-binding residues (higher precision) than two structure-based and two sequence-based machine-learning methods. Because the method requires no training data set and has no parameters, its precision does not degrade when applied to 'novel' protein sequences unlike methods that are parameterized for a given training data set. It was used to predict the 'unknown' RNA-binding residues in the C-terminal RNA-binding domain of human CPEB3. The two predicted residues, F430 and F474, were experimentally verified to bind RNA, in particular F430, whose mutation to alanine or asparagine nearly abolished RNA binding. The method has been implemented in a webserver called DR_bind1, which is freely available with no login requirement at http://drbind.limlab.ibms.sinica.edu.tw.


Asunto(s)
Aminoácidos/química , Proteínas de Unión al ARN/química , Sitios de Unión , Proteínas de Unión al ADN/química , Evolución Molecular , Humanos , Unión Proteica , Conformación Proteica , ARN/química , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Programas Informáticos , Electricidad Estática
13.
J Neurosci ; 33(43): 17008-22, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24155305

RESUMEN

Long-term memory requires activity-dependent synthesis of plasticity-related proteins (PRPs) to strengthen synaptic efficacy and consequently consolidate memory. Cytoplasmic polyadenylation element binding protein (CPEB)3 is a sequence-specific RNA-binding protein that regulates translation of several PRP RNAs in neurons. To understand whether CPEB3 plays a part in learning and memory, we generated CPEB3 knock-out (KO) mice and found that the null mice exhibited enhanced hippocampus-dependent, short-term fear memory in the contextual fear conditioning test and long-term spatial memory in the Morris water maze. The basal synaptic transmission of Schaffer collateral-CA1 neurons was normal but long-term depression evoked by paired-pulse low-frequency stimulation was modestly facilitated in the juvenile KO mice. Molecular and cellular characterizations revealed several molecules in regulating plasticity of glutamatergic synapses are translationally elevated in the CPEB3 KO neurons, including the scaffolding protein PSD95 and the NMDA receptors along with the known CPEB3 target, GluA1. Together, CPEB3 functions as a negative regulator to confine the strength of glutamatergic synapses by downregulating the expression of multiple PRPs and plays a role underlying certain forms of hippocampus-dependent memories.


Asunto(s)
Guanilato-Quinasas/metabolismo , Hipocampo/fisiología , Proteínas de la Membrana/metabolismo , Memoria a Corto Plazo , Proteínas de Unión al ARN/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Condicionamiento Clásico , Homólogo 4 de la Proteína Discs Large , Miedo , Guanilato-Quinasas/genética , Hipocampo/citología , Hipocampo/metabolismo , Depresión Sináptica a Largo Plazo , Aprendizaje por Laberinto , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Proteínas de Unión al ARN/genética , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/fisiología , Transmisión Sináptica
14.
Arterioscler Thromb Vasc Biol ; 33(3): 585-94, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23288172

RESUMEN

OBJECTIVE: Little is known about the involvement of the soluble form of receptor for advanced glycation end products (sRAGE) in acute ischemic stroke (IS). Here, we aim to identify the role of plasma sRAGE and high mobility group box 1 (HMGB1) in imaging-confirmed IS patients, as well as mice subjected to focal ischemic stroke. METHODS AND RESULTS: IS patients were recruited and plasma samples were collected for the measurement of sRAGE and HMGB1 after stroke. The relation of sRAGE and HMGB1 with acute IS was also investigated in a C57BL/6J mouse model of focal ischemic stroke and primary cortical neurons subjected to oxygen and glucose deprivation. Plasma levels of sRAGE and HMGB1 were both significantly increased within 48 hours after IS, and the sRAGE level was an independent predictor of functional outcome at 3 months poststroke. Immunoprecipitation assays revealed that the binding of plasma HMGB1 to sRAGE increased progressively after IS both in patients and mice. Administration of recombinant sRAGE significantly reduced infiltrating immune cells and improved the outcome of injury in mice, protected cultured neurons against oxygen and glucose deprivation-induced cell death, and ameliorated the detrimental effect of recombinant HMGB1. CONCLUSIONS: Early poststroke plasma sRAGE may play a protective role in IS by capturing HMGB1. Hence, recombinant sRAGE is a potential therapeutic agent in acute IS.


Asunto(s)
Corteza Cerebral/metabolismo , Infarto de la Arteria Cerebral Media/sangre , Neuronas/metabolismo , Receptores Inmunológicos/sangre , Accidente Cerebrovascular/sangre , Adulto , Anciano , Anciano de 80 o más Años , Análisis de Varianza , Animales , Biomarcadores/sangre , Estudios de Casos y Controles , Muerte Celular , Hipoxia de la Célula , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Distribución de Chi-Cuadrado , Modelos Animales de Enfermedad , Femenino , Glucosa/deficiencia , Proteína HMGB1/sangre , Humanos , Inmunoprecipitación , Infarto de la Arteria Cerebral Media/diagnóstico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Modelos Logísticos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/administración & dosificación , Oxígeno/metabolismo , Pronóstico , Unión Proteica , Ratas , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/administración & dosificación , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico , Rehabilitación de Accidente Cerebrovascular , Taiwán , Factores de Tiempo , Regulación hacia Arriba
15.
Nucleic Acids Res ; 40(17): 8484-98, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22730302

RESUMEN

Cytoplasmic polyadenylation element-binding protein (CPEB)3 is a nucleocytoplasm-shuttling RNA-binding protein and predominantly resides in the cytoplasm where it represses target RNA translation. When translocated into the nucleus, CPEB3 binds to Stat5b and downregulates Stat5b-dependent transcription. In neurons, the activation of N-methyl-d-aspartate receptors (NMDARs) accumulates CPEB3 in the nucleus and redistributes CPEB3 in the nucleocytoplasmic compartments to control gene expression. Nonetheless, it is unclear which karyopherin drives the nuclear import of CPEB3 and which transport direction is most affected by NMDA stimulation to increase the nuclear pool of CPEB3. Here, we have identified that the karyopherins, IPO5 and CRM1, facilitate CPEB3 translocation by binding to RRM1 and a leucine-containing motif of CPEB3, respectively. NMDAR signaling increases RanBP1 expression and reduces the level of cytoplasmic GTP-bound Ran. These changes enhance CPEB3-IPO5 interaction, which consequently accelerates the nuclear import of CPEB3. This study uncovers a novel NMDA-regulated import pathway to facilitate the nuclear translocation of CPEB3.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Células Cultivadas , Células HeLa , Humanos , Ratones , Neuronas/metabolismo , Señales de Exportación Nuclear , Señales de Localización Nuclear , Dominios y Motivos de Interacción de Proteínas , ARN Interferente Pequeño , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ratas , Ribonucleósido Difosfato Reductasa , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , beta Carioferinas/antagonistas & inhibidores , Proteína de Unión al GTP ran/metabolismo
16.
ACS Nano ; 18(6): 4822-4839, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38285698

RESUMEN

Efficiently delivering exogenous materials into primary neurons and neural stem cells (NSCs) has long been a challenge in neurobiology. Existing methods have struggled with complex protocols, unreliable reproducibility, high immunogenicity, and cytotoxicity, causing a huge conundrum and hindering in-depth analyses. Here, we establish a cutting-edge method for transfecting primary neurons and NSCs, named teleofection, by a two-step process to enhance the formation of biocompatible calcium phosphate (CaP) nanoparticles. Teleofection enables both nucleic acid and protein transfection into primary neurons and NSCs, eliminating the need for specialized skills and equipment. It can easily fine-tune transfection efficiency by adjusting the incubation time and nanoparticle quantity, catering to various experimental requirements. Teleofection's versatility allows for the delivery of different cargos into the same cell culture, whether simultaneously or sequentially. This flexibility proves invaluable for long-term studies, enabling the monitoring of neural development and synapse plasticity. Moreover, teleofection ensures the consistent and robust expression of delivered genes, facilitating molecular and biochemical investigations. Teleofection represents a significant advancement in neurobiology, which has promise to transcend the limitations of current gene delivery methods. It offers a user-friendly, cost-effective, and reproducible approach for researchers, potentially revolutionizing our understanding of brain function and development.


Asunto(s)
Nanopartículas , Células-Madre Neurales , Ácidos Nucleicos , Ácidos Nucleicos/metabolismo , Reproducibilidad de los Resultados , Células-Madre Neurales/metabolismo , Nanopartículas/química , Transfección , Fosfatos de Calcio/química
17.
Front Cell Dev Biol ; 11: 1075215, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910151

RESUMEN

Long-term maintenance of synaptic connections is important for brain function, which depends on varying proteostatic regulations to govern the functional integrity of neuronal proteomes. Proteostasis supports an interconnection of pathways that regulates the fate of proteins from synthesis to degradation. Defects in proteostatic signaling are associated with age-related functional decline and neurodegenerative diseases. Recent studies have advanced our knowledge of how cells have evolved distinct mechanisms to safely control protein homeostasis during synthesis, folding and degradation, and in different subcellular organelles and compartments. Neurodegeneration occurs when these protein quality controls are compromised by accumulated pathogenic proteins or aging to an irreversible state. Consequently, several therapeutic strategies, such as targeting the unfolded protein response and autophagy pathways, have been developed to reduce the burden of misfolded proteins and proved useful in animal models. Here, we present a brief overview of the molecular mechanisms involved in maintaining proteostatic networks, along with some examples linking dysregulated proteostasis to neuronal diseases.

18.
Sci Adv ; 9(47): eadi6855, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38000031

RESUMEN

Neuroinflammation causes neuronal injury in multiple sclerosis (MS) and other neurological diseases. MicroRNAs (miRNAs) are important modulators of neuronal stress responses, but knowledge about their contribution to neuronal protection or damage during inflammation is limited. Here, we constructed a regulatory miRNA-mRNA network of inflamed motor neurons by leveraging cell type-specific miRNA and mRNA sequencing of mice undergoing experimental autoimmune encephalomyelitis (EAE). We found robust induction of miR-92a in inflamed spinal cord neurons and identified cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) as a key target of miR-92a-mediated posttranscriptional silencing. We detected CPEB3 repression in inflamed neurons in murine EAE and human MS. Moreover, both miR-92a delivery and Cpeb3 deletion protected neuronal cultures against excitotoxicity. Supporting a detrimental effect of Cpeb3 in vivo, neuron-specific deletion in conditional Cpeb3 knockout animals led to reduced inflammation-induced clinical disability in EAE. Together, we identified a neuroprotective miR-92a-Cpeb3 axis in neuroinflammation that might serve as potential treatment target to limit inflammation-induced neuronal damage.


Asunto(s)
Encefalomielitis Autoinmune Experimental , MicroARNs , Esclerosis Múltiple , Humanos , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Neuroinflamatorias , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Inflamación/genética , Inflamación/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Ratones Endogámicos C57BL , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
19.
Science ; 379(6632): 586-591, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36758070

RESUMEN

Orthomyxo- and bunyaviruses steal the 5' cap portion of host RNAs to prime their own transcription in a process called "cap snatching." We report that RNA modification of the cap portion by host 2'-O-ribose methyltransferase 1 (MTr1) is essential for the initiation of influenza A and B virus replication, but not for other cap-snatching viruses. We identified with in silico compound screening and functional analysis a derivative of a natural product from Streptomyces, called trifluoromethyl-tubercidin (TFMT), that inhibits MTr1 through interaction at its S-adenosyl-l-methionine binding pocket to restrict influenza virus replication. Mechanistically, TFMT impairs the association of host cap RNAs with the viral polymerase basic protein 2 subunit in human lung explants and in vivo in mice. TFMT acts synergistically with approved anti-influenza drugs.


Asunto(s)
Alphainfluenzavirus , Antivirales , Betainfluenzavirus , Productos Biológicos , Inhibidores Enzimáticos , Metiltransferasas , Caperuzas de ARN , Tubercidina , Replicación Viral , Animales , Humanos , Ratones , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , ARN Viral/biosíntesis , Replicación Viral/efectos de los fármacos , Alphainfluenzavirus/efectos de los fármacos , Betainfluenzavirus/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/farmacología , Antivirales/química , Antivirales/farmacología , Tubercidina/análogos & derivados , Tubercidina/farmacología , Metiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Streptomyces/química , Simulación por Computador , Células A549
20.
Nucleic Acids Res ; 38(21): 7446-57, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20639532

RESUMEN

CPEB3 is a sequence-specific RNA-binding protein and represses translation of its target mRNAs in neurons. Here, we have identified a novel function of CPEB3 as to interact with Stat5b and inhibit its transcription activity in the nucleus without disrupting dimerization, DNA binding and nuclear localization of Stat5b. Moreover, CPEB3 is a nucleocytoplasm-shuttling protein with predominant residence in the cytoplasm; whereas activation of NMDA receptors accumulates CPEB3 in the nucleus. Using the knockdown approach, we have found the receptor tyrosine kinase, EGFR, is a target gene transcriptionally activated by Stat5b and downregulated by CPEB3 in neurons. The increased EGFR expression in CPEB3 knockdown neurons, when stimulated with EGF, alters the kinetics of downstream signaling. Taken together, CPEB3 has a novel function in the nucleus as to suppress Stat5b-dependent EGFR gene transcription. Consequently, EGFR signaling is negatively regulated by CPEB3 in neurons.


Asunto(s)
Receptores ErbB/genética , Regulación de la Expresión Génica , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factor de Transcripción STAT5/metabolismo , Transcripción Genética , Animales , Línea Celular , Núcleo Celular/química , Citoplasma/química , Regulación hacia Abajo , Receptores ErbB/fisiología , Humanos , Cinética , Aprendizaje , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Factor de Transcripción STAT5/antagonistas & inhibidores , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA