Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biotechnol Bioeng ; 118(7): 2503-2513, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33755193

RESUMEN

Morphology plays an important role in fungal fermentation and secondary metabolites biosynthesis. One novel technique, microparticle-enhanced cultivation was successfully utilized to control the morphology of Monascus purpureus precisely and enhance the yield of yellow pigments. The production of yellow pigments increased to 554.2 U/ml when 4 g/L 5000 mesh talc added at 24 h. Field emission scanning electron microscope observation indicated that the actual effect depends on the properties of microparticle. Sharp-edged microparticles showed better stimulatory effects than smooth, round-shaped ones. Particle size analysis, scanning electron microscope, and cell integrity evaluation proved obvious morphological changes were induced by talc addition, including smaller mycelial size, rougher hyphae, and decreased cell integrity. Furthermore, the expression levels of MrpigG, MrpigD, MrpigE, and MrpigH were significantly upregulated by the addition of talc. It indicated that the microparticle could not only affect the mycelial morphology, but also influence the expression levels of key genes in biosynthetic pathway of Monascus yellow pigments.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Hifa/crecimiento & desarrollo , Monascus/crecimiento & desarrollo , Pigmentos Biológicos/biosíntesis
2.
J Biosci Bioeng ; 135(3): 232-237, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36693775

RESUMEN

The microparticle-enhanced cultivation (MPEC) was used to enhance the production of Antrodin C by submerged fermentation of medicinal mushroom Antrodia cinnamomea. The crucial factors such as types, sizes, concentrations, and addition time of microparticles were optimized. The mechanism of MPEC on the membrane permeability and fluidity of A. cinnamomea and the expression of key genes in Antrodin C were investigated. When talc (18 µm, 2 g/L) was added into the fermentation liquid at 0 h, the promoting effect on Antrodin C was the best. The maximum yield of Antrodin C was 1615.7 mg/L, which was about 2.98 times of the control (541.7 mg/L). Talc slightly damaged the mycelia of A. cinnamomea, increased the release of intracellular constituents, and enhanced the index of unsaturated fatty acid. In addition, the key genes (IDI, E2.3.3.10, HMGCR, atoB) that might play an important role in the synthesis of the triquine-type sesquiterpene Antrodin C, were upregulated. In conclusion, talc increased the permeability and fluidity of cell membrane, upregulated the key genes and improved the biosynthesis process to enhance the yield of Antrodin C in the submerged fermentation of A. cinnamomea.


Asunto(s)
Agaricales , Antrodia , Talco/metabolismo , Antrodia/genética , Antrodia/metabolismo
3.
World J Clin Cases ; 10(18): 5934-5945, 2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35949837

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins constitute the innate adaptive immune system in several bacteria and archaea. This immune system helps them in resisting the invasion of phages and foreign DNA by providing sequence-specific acquired immunity. Owing to the numerous advantages such as ease of use, low cost, high efficiency, good accuracy, and a diverse range of applications, the CRISPR-Cas system has become the most widely used genome editing technology. Hence, the advent of the CRISPR/Cas technology highlights a tremendous potential in clinical diagnosis and could become a powerful asset for modern medicine. This study reviews the recently reported application platforms for screening, diagnosis, and treatment of different diseases based on CRISPR/Cas systems. The limitations, current challenges, and future prospectus are summarized; this article would be a valuable reference for future genome-editing practices.

4.
J Cancer Res Ther ; 15(7): 1603-1610, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31939444

RESUMEN

OBJECTIVE: Radiotherapy becomes more and more important in hepatocellular carcinoma (HCC) due to the development of technology, especially in unresectable cases. Metformin has a synergistic benefit with radiotherapy in some cancers, but remains unclear in HCC. This study aims to investigate the effect of metformin on radiosensitivity of HCC cells and the roles of specificity protein 1 (Sp1) as a target of metformin. METHODS: The SMMC-7721 cell line was exposed to various doses of γ-ray irradiation (0, 2, 4, 6, and 8 Gy) and with or without different concentrations of metformin (0, 1, 5, 10, and 20 mM) to measure the radiosensitivity using MTT assay. Flow cytometry was used to determine cell cycle by propidium iodide (PI) staining and apoptosis by Hoechst 33342/PI staining and Annexin V-FITC/PI staining. Real-time polymerase chain reaction and Western blotting were performed to analyze the Sp1 mRNA and protein expressions of Sp1 and epithelial-to-mesenchymal transition (EMT) marker E-cadherin and Vimentin. The invasion capability was measured by the Boyden chamber assay. RESULTS: In SMMC-7721 cells exposed to irradiation, metformin reduced proliferation and survival cells at various concentrations (0, 1, 5, 10, and 20 mM) and induced cell cycle arrest, apoptosis, and inhibited invasion. In SMMC-7721 cells with irradiation, the mRNA and protein expressions of Sp1 were significantly decreased by metformin as well as a selective Sp1 inhibitor. Metformin attenuated transforming growth factor-ß1 induced decrease of E-cadherin and increase of Vimentin proteins. CONCLUSION: Metformin demonstrated enhanced radiosensitivity and inhibition of EMT in HCC cells. Sp1 might be a target of metformin in radiosensitization.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Metformina/farmacología , Tolerancia a Radiación/efectos de los fármacos , Factor de Transcripción Sp1/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/radioterapia , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Neoplasias Hepáticas/radioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA