Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(27): e2301956120, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364115

RESUMEN

The energy needed to deform an elastic solid may be recovered, while in Newtonian fluids, like water and glycerol, deformation energy dissipates on timescales of the intermolecular relaxation time [Formula: see text] . For times considerably longer than [Formula: see text] the existence of shear elasticity requires long-range correlations, which challenge our understanding of the liquid state. We investigated laser-driven free surface bubbles in liquid glycerol by analyzing their expansion and bursting dynamics, in which we found a flow-dominating, rubber-like elasticity unrelated to surface tension forces. In extension to findings of a measurable liquid elasticity at even very low deformation frequencies [L. Noirez, P. Baroni, J. Mol. Struct. 972, 16-21 (2010), A. Zaccone, K. Trachenko, Proc. Natl. Acad. Sci. U.S.A. 117, 19653-19655 (2020)], that is difficult to access under increased strain, we find a robust, strain rate driven elasticity. The recovery of deformation energy allows the bursting bubble to reach Taylor-Culick velocities 20-fold higher than expected. The elasticity is persistent for microseconds, hence four orders of magnitude longer than [Formula: see text] . The dynamic shows that this persistence cannot originate from the far tail of a distribution of relaxation times around [Formula: see text] but must appear by frustrating the short molecular dissipation. The longer time should be interpreted as a relaxation of collective modes of metastable groups of molecules. With strain rates of 106 s-1, we observe a metastable glycerol shell exhibiting a rubber-like solid behavior with similar elasticity values and characteristic tolerance toward large strains, although the molecular interaction is fundamentally different.

2.
J Biol Chem ; 300(9): 107690, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159807

RESUMEN

Iron homeostasis is essential for maintaining metabolic health and iron disorder has been linked to chronic metabolic diseases. Increasing thermogenic capacity in adipose tissue has been considered as a potential approach to regulate energy homeostasis. Both mitochondrial biogenesis and mitochondrial function are iron-dependent and essential for adipocyte thermogenic capacity, but the underlying relationships between iron accumulation and adipose thermogenesis is unclear. Firstly, we confirmed that iron homeostasis and the iron regulatory markers (e.g., Tfr1 and Hfe) are involved in cold-induced thermogenesis in subcutaneous adipose tissues using RNA-seq and bioinformatic analysis. Secondly, an Hfe (Hfe-/-)-deficient mouse model, in which tissues become overloaded with iron, was employed. We found iron accumulation caused by Hfe deficiency enhanced mitochondrial respiratory chain expression in subcutaneous white adipose in vivo and resulted in enhanced tissue thermogenesis with upregulation of PGC-1α and adipose triglyceride lipase, mitochondrial biogenesis and lipolysis. To investigate the thermogenic capacity in vitro, stromal vascular fraction from adipose tissues was isolated, followed with adipogenic differentiation. Primary adipocyte from Hfe-/- mice exhibited higher cellular oxygen consumption, associated with enhanced expression of mitochondrial oxidative respiratory chain protein, while primary adipocytes or stromal vascular fractions from WT mice supplemented with iron citrate) exhibited similar effect in thermogenic capacity. Taken together, these findings indicate iron supplementation and iron accumulation (Hfe deficiency) can regulate adipocyte thermogenic capacity, suggesting a potential role for iron homeostasis in adipose tissues.

3.
J Virol ; 98(1): e0135923, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38084959

RESUMEN

Phage therapy has shown great promise for the treatment of multidrug-resistant bacterial infections. However, the lack of a thorough and organized understanding of phage-body interactions has limited its clinical application. Here, we administered different purified phages (Salmonella phage SE_SZW1, Acinetobacter phage AB_SZ6, and Pseudomonas phage PA_LZ7) intravenously to healthy animals (rats and monkeys) to evaluate the phage-induced host responses and phage pharmacokinetics with different intravenous (IV) doses in healthy animals. The plasma and the organs were sampled after different IV doses to determine the phage biodistribution, phage-induced cytokines, and antibodies. The potential side effects of phages on animals were assessed. A non-compartment model revealed that the plasma phage titer gradually decreased over time following a single dose. Repeated doses resulted in a 2-3 Log10 decline of the plasma phage titer at 5 min compared to the first dose, regardless of the type of phage administered in rats. Host innate immune responses were activated including splenic enlargement following repeated doses. Phage-specific neutralization antibodies in animals receiving phages were detected. Similar results were obtained from monkeys. In conclusion, the mammalian bodies were well-tolerant to the administered phages. The animal responses to the phages and the phage biodistribution profiles could have a significant impact on the efficacy of phage therapy.IMPORTANCEPhage therapy has demonstrated potential in addressing multidrug-resistant bacterial infections. However, an insufficient understanding of phage-host interactions has impeded its broader clinical application. In our study, specific phages were administered intravenously (IV) to both rats and monkeys to elucidate phage-host interactions and evaluate phage pharmacokinetics (PK). Results revealed that with successive IV administrations, there was a decrease in plasma phage concentrations. Concurrently, these administrations elicited both innate and adaptive immune responses in the subjects. Notably, the observed immune responses and PK profiles exhibited variation contingent upon the phage type and the mammalian host. Despite these variations, the tested mammals exhibited a favorable tolerance to the IV-administered phages. This underscores the significance of comprehending these interactions for the optimization of phage therapy outcomes.


Asunto(s)
Infecciones Bacterianas , Bacteriófagos , Terapia de Fagos , Animales , Humanos , Ratas , Infecciones Bacterianas/terapia , Bacteriófagos/fisiología , Mamíferos , Fagos Pseudomonas , Distribución Tisular , Farmacorresistencia Bacteriana Múltiple
4.
J Am Chem Soc ; 146(14): 9975-9983, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38466811

RESUMEN

Oxides have attracted considerable attention owing to their potential for nonlinear optical (NLO) applications. Although significant progress has been achieved in optimizing the structural characteristics of primitives (corresponding to the simplest constituent groups, namely, cations/anions/neutral molecules) comprising the crystalline oxides, the role of the primitives' interaction in determining the resultant functional structure and optical properties has long been underappreciated and remains unclear. In this study, we employ a π-conjugated organic primitive confinement strategy to manipulate the interactions between primitives in antimonates and thereby significantly enhance the optical nonlinearity. Chemical bonds and relatively weak H-bonding interactions promote the formation of cis- and trans-Sb(III)-based dimer configurations in (C5H5NO)(Sb2OF4) (4-HPYSOF) and (C5H7N2)(Sb2F7) (4-APSF), respectively, resulting in very different second-harmonic generation (SHG) efficiencies and birefringences. In particular, 4-HPYSOF displays an exceptionally strong SHG response (12 × KH2PO4 at 1064 nm) and a large birefringence (0.513 at 546 nm) for a Sb(III)-based NLO oxide as well as a UV cutoff edge. Structural analyses and theoretical studies indicate that polarized ionic bond interactions facilitate the favorable arrangement of both the inorganic and organic primitives, thereby significantly enhancing the optical nonlinearity in 4-HPYSOF. Our findings shed new light on the intricate correlations between the interactions of primitives, inorganic primitive configuration, and SHG properties, and, more broadly, our approach provides a new perspective in the development of advanced NLO materials through the interatomic bond engineering of oxides.

5.
J Gene Med ; 26(1): e3639, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38058259

RESUMEN

PD-1 monoclonal antibodies (mAb) have demonstrated remarkable efficacy in a variety of cancers, including Hepatocellular carcinoma (HCC). However, the patient response rates remain suboptimal, and a significant proportion of initial responders may develop resistance to this therapeutic approach. Akkermansia muciniphila (AKK), a microorganism implicated in multiple human diseases, has been reported to be more abundant in patients who exhibit favorable responses to PD-1mAb. However, the underlying mechanism has yet to be elucidated. In our study, we found that AKK could enhance the efficacy of PD-1mAb against HCC in a tumor-bearing mouse model. It promotes HCC tumor cells apoptosis and raise the CD8+ T proportion in the tumor microenvironment. Additionally, AKK downregulates PD-L1 expression in tumor cells. Furthermore, the analysis of metabonomics demonstrates that AKK induces alterations in the host's bile acid metabolism, leading to a significant increase in serum TUDCA levels. Considering the immunosuppresive roles of TUDCA in HCC development, it is plausible to speculate that AKK may reinforce the immunotherapy of PD-1mAb against HCC through its impact on bile acid metabolism.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Ácido Tauroquenodesoxicólico/uso terapéutico , Microambiente Tumoral , Akkermansia
6.
Respir Res ; 25(1): 110, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431661

RESUMEN

Acute lung injury (ALI) is one of the life-threatening complications of sepsis, and macrophage polarization plays a crucial role in the sepsis-associated ALI. However, the regulatory mechanisms of macrophage polarization in ALI and in the development of inflammation are largely unknown. In this study, we demonstrated that macrophage polarization occurs in sepsis-associated ALI and is accompanied by mitochondrial dysfunction and inflammation, and a decrease of PRDX3 promotes the initiation of macrophage polarization and mitochondrial dysfunction. Mechanistically, PRDX3 overexpression promotes M1 macrophages to differentiate into M2 macrophages, and enhances mitochondrial functional recovery after injury by reducing the level of glycolysis and increasing TCA cycle activity. In conclusion, we identified PRDX3 as a critical hub integrating oxidative stress, inflammation, and metabolic reprogramming in macrophage polarization. The findings illustrate an adaptive mechanism underlying the link between macrophage polarization and sepsis-associated ALI.


Asunto(s)
Lesión Pulmonar Aguda , Macrófagos , Peroxiredoxina III , Humanos , Lesión Pulmonar Aguda/metabolismo , Inflamación/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/metabolismo , Peroxiredoxina III/metabolismo , Sepsis/metabolismo , Animales , Ratones
7.
Angew Chem Int Ed Engl ; 63(10): e202318107, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38116843

RESUMEN

Considerable effort has been invested in the development of non-centrosymmetric (NCS) inorganic solids for ferroelectricity-, piezoelectricity- and, particularly, optical nonlinearity-related applications. While great progress has been made, a persistent problem is the difficulty in constructing NCS materials, which probably stems from non-directionality and unsaturation of the ionic bonds between metal counter-cations and covalent anionic modules. We report herein a secondary-bond-driven approach that circumvents the cancellation of dipole moments between adjacent anionic modules that has plagued second-harmonic generation (SHG) material design, and which thereby affords a polar structure with strong SHG properties. The resultant first NCS counter-cation-free iodate, VO2 (H2 O)(IO3 ) (VIO), a new class of iodate, crystallizes in a polar lattice with ∞ 1 [ ${{}_{{\rm { \infty }}}{}^{{\rm { 1}}}{\rm { [}}}$ VO2 (H2 O)(IO3 )] zigzag chains connected by weak hydrogen bonds and intermolecular forces. VIO exhibits very large SHG responses (18 × KH2 PO4 @ 1200 nm, 1.5 × KTiOPO4 @ 2100 nm) and sufficient birefringence (0.184 @ 546 nm). Calculations and crystal structure analysis attribute the large SHG responses to consistent polarization orientations of the ∞ 1 [ ${{}_{{\rm { \infty }}}{}^{{\rm { 1}}}{\rm { [}}}$ VO2 (H2 O)(IO3 )] chains controlled by secondary bonds. This study highlights the advantages of manipulating the secondary bonds in inorganic solids to control NCS structure and optical nonlinearity, affording a new perspective in the development of high-performance NLO materials.

8.
Angew Chem Int Ed Engl ; : e202406941, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785100

RESUMEN

Nonlinear absorption coefficient and modulation depth stand as pivotal properties of nonlinear optical (NLO) materials, while the existing NLO materials exhibit limitations such as low nonlinear absorption coefficients and/or small modulation depths, thereby severely impeding their practical application. Here we unveil that introducing Jahn-Teller distortion in a Mott-Hubbard system, (MA)2CuX4 (MA=methylammonium; X=Cl, Br) affords the simultaneous attainment of a giant nonlinear absorption coefficient and substantial modulation depth. The optimized compound, (MA)2CuCl4, demonstrates a nonlinear absorption coefficient of (1.5±0.08)×105 cm GW-1, a modulation depth of 60 %, and a relatively low optical limiting threshold of 1.22×10-5 J cm-2. These outstanding attributes surpass those of most reported NLO materials. Our investigation reveals that a more pronounced distortion of the [CuX6]4- octahedron emerges as a crucial factor in augmenting optical nonlinearity. Mechanism study involving structural and spectral characterization along with theoretical calculations indicates a correlation between the compelling performance and the Mott-Hubbard band structure of the materials, coupled with the Jahn-Teller distortion-induced d-d transition. This study not only introduces a promising category of high-performance NLO materials but also provides novel insights into enhancing the performance of such materials.

9.
Angew Chem Int Ed Engl ; 63(28): e202403328, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38662352

RESUMEN

Solid-state structures with the superhalogen [BO2]- have thus far only been observed with a few compounds whose syntheses require high reaction temperatures and complicated procedures, while their optical properties remain almost completely unexplored. Herein, we report a facile, energy-efficient synthesis of the first [BO2]-based deep-ultraviolet (deep-UV) transparent oxide K9[B4O5(OH)4]3(CO3)(BO2) ⋅ 7H2O (KBCOB). Detailed structural characterization and analysis confirm that KBCOB possesses a rare four-in-one three-dimensional quasi-honeycomb framework, with three π-conjugated anions ([BO2]-, [BO3]3-, and [CO3]2-) and one non-π-conjugated anion ([BO4]5-) in the one crystal. The evolution from the traditional halogenated nonlinear optical (NLO) analogues to KBCOB by superhalogen [BO2]- substitution confers deep-UV transparency (<190 nm), a large second-harmonic generation response (1.0×KH2PO4 @ 1064 nm), and a 15-fold increase in birefringence. This study affords a new route to the facile synthesis of functional [BO2]-based oxides, paving the way for the development of next-generation high-performing deep-UV NLO materials.

10.
BMC Genomics ; 24(1): 340, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340366

RESUMEN

BACKGROUND: Oriental river prawn (Macrobrachium nipponense) is one of the most dominant species in shrimp farming in China, which is a rich source of protein and contributes to a significant impact on the quality of human life. Thus, more complete and accurate annotation of gene models are important for the breeding research of oriental river prawn. RESULTS: A full-length transcriptome of oriental river prawn muscle was obtained using the PacBio Sequel platform. Then, 37.99 Gb of subreads were sequenced, including 584,498 circular consensus sequences, among which 512,216 were full length non-chimeric sequences. After Illumina-based correction of long PacBio reads, 6,599 error-corrected isoforms were identified. Transcriptome structural analysis revealed 2,263 and 2,555 alternative splicing (AS) events and alternative polyadenylation (APA) sites, respectively. In total, 620 novel genes (NGs), 197 putative transcription factors (TFs), and 291 novel long non-coding RNAs (lncRNAs) were identified. CONCLUSIONS: In summary, this study offers novel insights into the transcriptome complexity and diversity of this prawn species, and provides valuable information for understanding the genomic structure and improving the draft genome annotation of oriental river prawn.


Asunto(s)
Palaemonidae , Animales , Humanos , Palaemonidae/genética , Perfilación de la Expresión Génica , Transcriptoma , Empalme Alternativo , Isoformas de Proteínas/genética
11.
J Am Chem Soc ; 145(5): 3040-3046, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36634002

RESUMEN

The development of deep-ultraviolet (DUV)/solar-blind UV nonlinear optical (NLO) crystals simultaneously possessing wide UV transparency, strong second-harmonic generation (SHG) response, and suitable birefringence is a major challenge in advanced laser technology. We herein propose a "cation compensation" strategy for strong optical nonlinearity in inorganic solids that is exemplified by the introduction of strongly electropositive transition metals (TMs). Following this strategy, the first d0 TM UV-transparent NLO sulfates, MF2(SO4) (M = Zr (ZFSO), Hf (HFSO)), have been synthesized. Short UV cutoff edges of 206 nm and below 190 nm are observed for bulk ZFSO and HFSO crystals, respectively, together with the strongest powder SHG responses (3.2 × (ZFSO) and 2.5 × KDP (HFSO)) for solar-blind UV/DUV NLO sulfates, as well as suitable birefringence. This work provides a new and efficient approach to the development of urgently needed high-performance NLO materials for applications in the short-wavelength UV region.

12.
Anal Chem ; 95(26): 10025-10033, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37343158

RESUMEN

Exosomes are small extracellular vesicles that can be utilized as noninvasive biomarkers for diagnosis and treatment of cancer and other diseases. This study reports on a strategy involving a hybridized chain reaction-amplified chain coupled with an alkaline phosphatase-induced Ag-shell nanostructure for the ultrasensitive and rapid surface-enhanced Raman scattering immunoassay of exosomes. Exosomes from prostate cancer were captured using prostate-specific membrane antigen aptamer-modified magnetic beads; then, the hybridized chain reaction-amplified chain was released, incorporating a large number of functional moieties with signal amplification effects. Moreover, the steps of traditional immunoassay were simplified using magnetic materials, and the rapid, sensitive, and accurate detection of exosomes was achieved. Results could be obtained within 40 min with a detection limit of 19 particles/µL. Furthermore, the sera of human prostate cancer patients could be easily distinguished from those of healthy controls, highlighting the potential use of exosome analysis in clinical diagnostics.


Asunto(s)
Exosomas , Nanoestructuras , Neoplasias de la Próstata , Masculino , Humanos , Fosfatasa Alcalina/análisis , Exosomas/química , Espectrometría Raman , Neoplasias de la Próstata/diagnóstico , Inmunoensayo/métodos
13.
Anal Chem ; 95(2): 1446-1453, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36577081

RESUMEN

An aptamer-based field-effect transistor (Apta-FET) is a well-developed assay method with high selectivity and sensitivity. Due to the limited information density that natural nucleotide library holds, the Apta-FET faces fundamental restriction in universality to detect various types of analytes. Herein, we demonstrate a type of Apta-FET sensors based on an artificial nucleotide aptamer (AN-Apta-FET). The introduction of an artificial nucleotide increases the diversity of the potential aptamer structure and expands the analyte category of the Apta-FET. The AN-Apta-FET specifically detects hepatoma exosomes, which traditional Apta-FET fails to discriminate from other tumor-derived exosomes, with a limit of detection down to 242 particles mL-1. The AN-Apta-FET distinguishes serum samples of hepatocellular carcinoma patients within 9 min from those of healthy people, showing the potential as a comprehensive assay tool in future disease diagnosis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Carcinoma Hepatocelular , Exosomas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Neoplasias Hepáticas/diagnóstico
14.
J Med Virol ; 95(1): e28129, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36068190

RESUMEN

CD7 and CD57 are related to the differentiation and functional stages of CD8+ T cells. However, the role of their combined presence in CD8+ T cells in patients with chronic hepatitis B virus (HBV) infection, especially those with end-stage liver disease, remains unclear. Blood samples from healthy volunteers and patients with chronic hepatitis B were analyzed via Luminex assay and ELISA to measure plasma cytokine levels. Further, recombinant IL-22 was used to stimulate peripheral blood mononuclear cells from healthy volunteers, and the frequency of CD3+ CD4- CD7+ CD57- T cells and apoptosis rates were investigated via flow cytometry. Patients with end-stage liver disease, particularly those with acute to chronic liver failure, showed decreased CD3+ CD4- CD7+ CD57- T cell frequency. Furthermore, the prevalence of CD3+ CD4- CD7+ CD57- T cells was negatively correlated with disease severity, prognosis, and complications (ascites). We also observed that IL-22 promoted apoptosis and brought about a decrease in the number of CD3+ CD4- CD7+ CD57- T cells in a dose-dependent manner. CD3+ CD4- CD7+ CD57- T cells displayed a B and T lymphocyte attenuator (BTLA)high CD25high CD127high immunosuppressive phenotype and showed low interferon-γ, tumor necrosis factor-α, granzyme A, and perforin expression levels. The present findings will elucidate the pathogenesis of HBV-related end-stage liver disease and aid the identification of novel drug targets.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Hepatitis B Crónica , Humanos , Virus de la Hepatitis B , Hepatitis B Crónica/complicaciones , Linfocitos T CD8-positivos , Leucocitos Mononucleares , Subgrupos de Linfocitos T , Progresión de la Enfermedad
15.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38069090

RESUMEN

Chinese hamster ovary (CHO) cells are a popular choice in biopharmaceuticals because of their beneficial traits, including high-density suspension culture, safety, and exogenously produced proteins that closely resemble natural proteins. Nevertheless, a decline in the expression of exogenous proteins is noted as culture time progresses. This is a consequence of foreign gene recombination into chromosomes by random integration. The current investigation employs CRISPR-Cas9 technology to integrate foreign genes into a particular chromosomal location for sustained expression. Results demonstrate the successful integration of enhanced green fluorescent protein (EGFP) and human serum albumin (HSA) near base 434814407 on chromosome NC_048595.1 of CHO-K1 cells. Over 60 successive passages, monoclonal cell lines were produced that consistently expressed all relevant external proteins without discernible variation in expression levels. In conclusion, the CHO-K1 cell locus, NC_048595.1, proves an advantageous locus for stable exogenous protein expression. This study provides a viable approach to establishing a CHO cell line capable of enduring reliable exogenous protein expression.


Asunto(s)
Sistemas CRISPR-Cas , Albúmina Sérica Humana , Cricetinae , Animales , Humanos , Células CHO , Cricetulus , Proteínas Recombinantes
16.
Molecules ; 28(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446903

RESUMEN

Yak yogurt, which is rich in microorganisms, is a naturally fermented dairy product prepared with ancient and modern techniques by Chinese herdsmen in the Qinghai-Tibet Plateau. The objective of this research was to assess the impact of Lactobacillus bulgaricus and Streptococcus thermophilus starter cultures on the quality and shelf life of yak yogurt, as well as the genetic stability across multiple generations, in comparison to commercially available plain yogurt and peach oat flavor yogurt. Following that, the samples were evenly divided into four treatment groups denoted as T1 (treatment 1), T2, T3, and T4, with each group employing a distinct source of yogurt formulation. T1 included L. bulgaricus, T2 comprised S. thermophilus, T3 consisted of plain yogurt, and T4 represented peach oat yogurt flavor. The findings indicate that T1 yogurt consistently presents a lower pH and higher acidity compared to the other three yogurt types throughout the entire generation process. Moreover, the fat content in all generations of the four yogurt types exceeds the national standard of 3.1 g/100 g, while the total solid content shows a tendency to stabilize across generations. The protein content varies significantly among each generation, with T1 and T4 yogurt indicating higher levels compared to the T2 and T3 yogurt groups. In terms of overall quality, T1 and T4 yogurt are superior to T2 and T3 yogurt, with T1 yogurt being the highest in quality among all groups. The findings revealed that the inclusion of L. bulgaricus led to enhanced flavor, texture, and genetic stability in yak yogurt. This study will serve as a valuable source of data, support, and methodology for the development and screening of compound starters to be utilized in milk fermentation in future research and applications.


Asunto(s)
Lactobacillus delbrueckii , Yogur , Animales , Bovinos , Yogur/análisis , Leche/química , Tibet , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/metabolismo , Fermentación
17.
Molecules ; 28(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37513369

RESUMEN

Bergenin (BER), a natural component of polyphenols, has a variety of pharmacological activities, especially in improving drug metabolism, reducing cholestasis, anti-oxidative stress and inhibiting inflammatory responses. The aim of this study was to investigate the effects of BER on liver injury induced by isonicotinic acid hydrazide (INH) and rifampicin (RIF) in mice. The mice model of liver injury was established with INH (100 mg/kg)+RIF (100 mg/kg), and then different doses of BER were used to intervene. The pathological morphology and biochemical indicators of mice were detected. Meanwhile, RNA sequencing was performed to screen the differentially expressed genes and signaling pathways. Finally, critical differentially expressed genes were verified by qRT-PCR and Western blot. RNA sequencing results showed that 707 genes were significantly changed in the INH+RIF group compared with the Control group, and 496 genes were significantly changed after the BER intervention. These differentially expressed genes were mainly enriched in the drug metabolism, bile acid metabolism, Nrf2 pathway and TLR4 pathway. The validation results of qRT-PCR and Western blot were consistent with the RNA sequencing. Therefore, BER alleviated INH+RIF-induced liver injury in mice. The mechanism of BER improving INH+RIF-induced liver injury was related to regulating drug metabolism enzymes, bile acid metabolism, Nrf2 pathway and TLR4 pathway.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratones , Animales , Isoniazida/efectos adversos , Rifampin/efectos adversos , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Receptor Toll-Like 4/metabolismo , Hígado , Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
18.
Angew Chem Int Ed Engl ; 62(42): e202310835, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37610762

RESUMEN

Second-harmonic generation (SHG) is a fundamental optical property of nonlinear optical (NLO) crystals. Thus far, it has proved difficult to engineer large SHG responses, particularly in the mid-infrared region, owing to the difficulty in simultaneously controlling the arrangement and density of functional NLO-active units. Herein, a new assembly strategy employing functional modules only, and aimed at maximizing the density and optimizing the spatial arrangement of highly efficient functional modules, has been applied to the preparation of NLO crystals, affording the van der Waals crystal MoO2 Cl2 . This exhibits the strongest powder SHG response (2.1×KTiOPO4 (KTP) @ 2100 nm) for a transition-metal oxyhalide, a wide optical transparency window, and a sufficient birefringence. MoO2 Cl2 is the first SHG-active transition-metal oxyhalide effective in the infrared region. Theoretical studies and crystal structure analysis suggest that the densely packed, optimally-aligned [MoO4 Cl2 ] modules within the two-dimensional van der Waals layers are responsible for the giant SHG response.

19.
Angew Chem Int Ed Engl ; 62(52): e202315133, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37926678

RESUMEN

The development of urgently-needed ultraviolet (UV)/deep-UV nonlinear optical (NLO) materials has been hindered by contradictory requirements of the microstructure, in particular the need for a strong second-harmonic generation (SHG) response as well as a short phase-matching (PM) wavelength. We herein employ a "de-covalency" band gap engineering strategy to adjust the optical linearity and nonlinearity. This has been achieved by assembling two types of transition-metal (TM) polyhedra ([TaO2 F4 ] and [TaF7 ]), affording the first tantalum-based deep-UV-transparent NLO materials, A5 Ta3 OF18 (A = K (KTOF), Rb (RTOF)). Experimental and theoretical studies reveal that the highly ionic bonds and strong electropositivity of tantalum in the two oxyfluorides induce record short PM wavelengths (238 (KTOF) and 240 (RTOF) nm) for d0 -TM-centered oxides, in addition to strong SHG responses (2.8 × KH2 PO4 (KTOF) and 2.6 × KH2 PO4 (RTOF)), and sufficient birefringences (0.092 (KTOF) and 0.085 (RTOF) at 546 nm). These results not only broaden the available strategies for achieving deep-UV NLO materials by exploiting the currently neglected d0 -TMs, but also push the shortest PM wavelength into the short-wavelength UV region.

20.
Angew Chem Int Ed Engl ; 62(39): e202309365, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37531147

RESUMEN

The design of efficient nonlinear optical (NLO) crystals continues to pose significant challenges due to the difficulty of assembling polar NLO-active modules in an optimal additive fashion. We report herein the first NLO-active mercuric nitrates A2 Hg(NO3 )4 (A=(KHNO), Rb (RHNO)), for which assembly is induced by ionic polarization of the d10 cations. The two new crystalline compounds are isostructural, featuring interesting pseudo-diamond-like structures with parallel [Hg(NO3 )4 ] modules, and leading to strong powder second-harmonic generation (SHG) responses of 9.2 (KHNO) and 8.8 (RHNO) times that of KH2 PO4 . In combination with the simple solution preparation of centimeter-scale crystals, sufficient birefringence, and short ultraviolet (UV) cutoff edges, these attributes make KHNO and RHNO promising candidates for UV NLO materials. Theoretical calculations and single-crystal structure analysis reveal that the newly-developed highly condensed and distorted [Hg(NO3 )4 ] module, with an Hg2+ cation that is quadruply bidentate nitrate-ligated, is crucial for the significant SHG responses. This work highlights the potential importance of modules with multiple bidentate ligands for the development of high-performing next-generation NLO materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA