Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 196: 105592, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945225

RESUMEN

Spodoptera litura, a polyphagous lepidopteran pest, demonstrates a remarkable capacity to adapt to varying host plants by efficiently detoxifying phytochemicals. However, the underlying mechanism for this adaptation is not well understood. Herein, twenty eplison glutathione S-transferase genes (GSTes) were characterized and their roles in phytochemical tolerance were analyzed in S. litura. Most of the GSTe genes were mainly expressed in the larval midgut and fat body. Exposure to the phytochemicals, especially xanthotoxin, induced the expression of most GSTe genes. Molecular docking analysis revealed that xanthotoxin could form stable bonds with six xanthotoxin-responsive GSTes, with binding free energies ranging from -36.44 to -68.83 kcal mol-1. Knockdown of these six GSTe genes increased the larval susceptibility to xanthotoxin. Furthermore, xanthotoxin exposure significantly upregulated the expression of two transcription factor genes CncC and MafK. Silencing of either CncC or MafK reduced the expression of GSTe16, which exhibited the largest change in response to xanthotoxin. Additionally, analysis of the promoter sequence of GSTe16 revealed the presence of seven CncC/Maf binding sites. Luciferase reporter assays showed that CncC and MafK enhanced the expression of GSTe16, leading to the increased xanthotoxin tolerance in S. litura. These findings provide insight into the functions and transcriptional regulatory mechanisms of GSTes, thereby enhancing our understanding of the role of GSTs in the adaptation of lepidopteran pests to phytochemicals.


Asunto(s)
Insecticidas , Metoxaleno , Animales , Spodoptera/metabolismo , Metoxaleno/farmacología , Simulación del Acoplamiento Molecular , Glutatión/metabolismo , Transferasas/metabolismo , Larva/metabolismo , Insecticidas/farmacología
2.
Int J Biol Macromol ; 261(Pt 1): 129745, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286378

RESUMEN

Efficient detoxification is the key factor for phytophagous insect to adapt to phytochemicals. However, the role of uridine diphosphate (UDP)-glycosyltransferases (UGTs) in insect anti-defense to phytochemical flavone is largely unknown. In this study, 52 UGT genes were identified in Spodoptera litura and they presented evident gene duplication. UGT played a crucial part in larval tolerance to flavone because the enzyme activity and transcriptional level of 77 % UGT members were remarkably upregulated by flavone administration and suppression of UGT enzyme activity and gene expressions significantly increased larval susceptibility to flavone. Bacteria coexpressing UGTs had high survival rates under flavone treatment and flavone was dramatically metabolized by UGT recombinant cells, which indicated the involvement of UGTs in flavone detoxification. What's more, ecdysone pathway was activated by flavone. Topical application of 20-hydroxyecdysone highly upregulated UGT enzyme activity and more than half of UGT expressions. The effects were opposite when ecdysone receptor (EcR) and ultraspiracle (USP)-mediated ecdysone signaling pathway was inhibited. Furtherly, promoter reporter assays of 5 UGT genes showed that their transcription activities were notably increased by cotransfection with EcR and USP. In consequence, this study suggested that UGTs were involved in flavone detoxification and their transcriptional expressions were regulated by ecdysone pathway.


Asunto(s)
Flavonas , Glicosiltransferasas , Animales , Glicosiltransferasas/metabolismo , Uridina Difosfato , Spodoptera/genética , Ecdisona , Insectos/metabolismo , Fitoquímicos , Flavonas/farmacología
3.
Comput Biol Med ; 166: 107515, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37839221

RESUMEN

The despeckling of ultrasound images contributes to the enhancement of image quality and facilitates precise treatment of conditions such as tumor cancers. However, the use of existing methods for eliminating speckle noise can cause the loss of image texture features, impacting clinical judgment. Thus, maintaining clear lesion boundaries while eliminating speckle noise is a challenging task. This paper presents an innovative approach for denoising ultrasound images using a novel noise reduction network model called content-aware prior and attention-driven (CAPAD). The model employs a neural network to automatically capture the hidden prior features in ultrasound images to guide denoising and embeds the denoiser into the optimization module to simultaneously optimize parameters and noise. Moreover, this model incorporates a content-aware attention module and a loss function that preserves the structural characteristics of the image. These additions enhance the network's capacity to capture and retain valuable information. Extensive qualitative evaluation and quantitative analysis performed on a comprehensive dataset provide compelling evidence of the model's superior denoising capabilities. It excels in noise suppression while successfully preserving the underlying structures within the ultrasound images. Compared to other denoising algorithms, it demonstrates an improvement of approximately 5.88% in PSNR and approximately 3.61% in SSIM. Furthermore, using CAPAD as a preprocessing step for breast tumor segmentation in ultrasound images can greatly improve the accuracy of image segmentation. The experimental results indicate that the utilization of CAPAD leads to a notable enhancement of 10.43% in the AUPRC for breast cancer tumor segmentation.

4.
J Agric Food Chem ; 71(41): 14989-15002, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37792742

RESUMEN

Although the induction of cytochrome P450 monooxygenases involved in insect detoxification has been well documented, the underlying regulatory mechanisms remain obscure. In Spodoptera litura, CYP321A subfamily members were effectively induced by exposure to flavone, xanthotoxin, curcumin, and λ-cyhalothrin, while knockdown of the CYP321A genes increased larval susceptibility to these xenobiotics. Homology modeling and molecular docking analyses showed that these four xenobiotics could stably bind to the CYP321A enzymes. Furthermore, two transcription factor genes, CncC and MafK, were significantly induced by the xenobiotics. Knockdown of CncC or MafK reduced the expression of four CYP321A genes and increased larval susceptibility to the xenobiotics. Dual-luciferase reporter assays showed that cotransfection of reporter plasmids carrying the CYP321A promoter with CncC and/or MafK-expressing constructs significantly magnified the promoter activity. These results indicate that the induction of CYP321A subfamily members conferring larval detoxification capability to xenobiotics is mediated by the activation of CncC and MafK.


Asunto(s)
Insecticidas , Piretrinas , Animales , Spodoptera , Simulación del Acoplamiento Molecular , Proteínas de Insectos/metabolismo , Piretrinas/metabolismo , Larva , Fitoquímicos/metabolismo , Insecticidas/farmacología , Insecticidas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA