Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 582(7811): 271-276, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499640

RESUMEN

A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes1,2 and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest3. Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.


Asunto(s)
Calcineurina/metabolismo , Proliferación Celular , Proteínas de Homeodominio/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Miocitos Cardíacos/citología , Animales , Animales Recién Nacidos , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Corazón/fisiología , Proteínas de Homeodominio/genética , Masculino , Ratones , Miocardio/citología , Unión Proteica , Regeneración
2.
Gastroenterology ; 166(1): e17-e19, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37714363
3.
Mol Cell ; 42(5): 700-12, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21658608

RESUMEN

MCM proteins are components of a DNA helicase that plays an essential role in DNA replication and cell proliferation. However, MCM proteins are present in excess relative to origins of replication, suggesting they may serve other functions. Decreased proliferation is a fundamental physiological response to hypoxia in many cell types, and hypoxia-inducible factor 1 (HIF-1) has been implicated in this process. Here, we demonstrate that multiple MCM proteins bind directly to the HIF-1α subunit and synergistically inhibit HIF-1 transcriptional activity via distinct O(2)-dependent mechanisms. MCM3 inhibits transactivation domain function, whereas MCM7 enhances HIF-1α ubiquitination and proteasomal degradation. HIF-1 activity decreases when quiescent cells re-enter the cell cycle, and this effect is MCM dependent. Exposure to hypoxia leads to MCM2-7 downregulation in diverse cell types. These studies reveal a function of MCM proteins apart from their DNA helicase activity and establish a direct link between HIF-1 and the cell-cycle machinery.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas Nucleares/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Regulación de la Expresión Génica , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Células 3T3 NIH , Oxígeno/metabolismo , Transcripción Genética , Ubiquitinación
5.
Proc Natl Acad Sci U S A ; 112(31): 9751-6, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195796

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disease caused by a glutamine repeat expansion in mutant huntingtin (mHtt). Despite the known genetic cause of HD, the pathophysiology of this disease remains to be elucidated. Inositol polyphosphate multikinase (IPMK) is an enzyme that displays soluble inositol phosphate kinase activity, lipid kinase activity, and various noncatalytic interactions. We report a severe loss of IPMK in the striatum of HD patients and in several cellular and animal models of the disease. This depletion reflects mHtt-induced impairment of COUP-TF-interacting protein 2 (Ctip2), a striatal-enriched transcription factor for IPMK, as well as alterations in IPMK protein stability. IPMK overexpression reverses the metabolic activity deficit in a cell model of HD. IPMK depletion appears to mediate neural dysfunction, because intrastriatal delivery of IPMK abates the progression of motor abnormalities and rescues striatal pathology in transgenic murine models of HD.


Asunto(s)
Enfermedad de Huntington/enzimología , Enfermedad de Huntington/fisiopatología , Neuronas/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Adulto , Anciano , Animales , Biocatálisis , Demografía , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Estabilidad de Enzimas , Femenino , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Mitocondrias/metabolismo , Actividad Motora , Neostriado/enzimología , Neostriado/patología , Neostriado/fisiopatología , Neuronas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Cambios Post Mortem , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Análisis de Supervivencia , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
6.
Proc Natl Acad Sci U S A ; 111(32): E3325-34, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071185

RESUMEN

Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that mediates adaptive responses to oxygen deprivation. In addition, the HIF-1α subunit has a nontranscriptional role as a negative regulator of DNA replication through effects on minichromosome maintenance helicase loading and activation. However, some cell types continue to replicate under hypoxic conditions. The mechanism by which these cells maintain proliferation in the presence of elevated HIF-1α levels is unclear. Here we report that HIF-1α physically and functionally interacts with cyclin-dependent kinase 1 (Cdk1) and Cdk2. Cdk1 activity blocks lysosomal degradation of HIF-1α and increases HIF-1α protein stability and transcriptional activity. By contrast, Cdk2 activity promotes lysosomal degradation of HIF-1α at the G1/S phase transition. Blocking lysosomal degradation by genetic or pharmacological means leads to HIF-1α-dependent cell-cycle arrest, demonstrating that lysosomal degradation of HIF-1α is an essential step for the maintenance of cell-cycle progression under hypoxic conditions.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Puntos de Control del Ciclo Celular/fisiología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lisosomas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/genética , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteolisis
7.
Proc Natl Acad Sci U S A ; 111(3): E384-93, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24324133

RESUMEN

Overexpression of Rho kinase 1 (ROCK1) and the G protein RhoA is implicated in breast cancer progression, but oncogenic mutations are rare, and the molecular mechanisms that underlie increased ROCK1 and RhoA expression have not been determined. RhoA-bound ROCK1 phosphorylates myosin light chain (MLC), which is required for actin-myosin contractility. RhoA also activates focal adhesion kinase (FAK) signaling. Together, these pathways are critical determinants of the motile and invasive phenotype of cancer cells. We report that hypoxia-inducible factors coordinately activate RhoA and ROCK1 expression and signaling in breast cancer cells, leading to cell and matrix contraction, focal adhesion formation, and motility through phosphorylation of MLC and FAK. Thus, intratumoral hypoxia acts as an oncogenic stimulus by triggering hypoxia-inducible factor → RhoA → ROCK1 → MLC → FAK signaling in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Hipoxia de la Célula , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Colágeno/química , Citoesqueleto/metabolismo , Femenino , Células HEK293 , Humanos , Microscopía Confocal , Mutación , Metástasis de la Neoplasia , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxígeno/metabolismo , Fosforilación , Ratas , Transducción de Señal , Microambiente Tumoral
8.
Am J Physiol Cell Physiol ; 309(12): C775-82, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26491052

RESUMEN

Hypoxia is a physiological cue that impacts diverse physiological processes, including energy metabolism, autophagy, cell motility, angiogenesis, and erythropoiesis. One of the key cell-autonomous effects of hypoxia is as a modulator of cell proliferation. For most cell types, hypoxia induces decreased cell proliferation, since an increased number of cells, with a consequent increase in O2 demand, would only exacerbate hypoxic stress. However, certain cell populations maintain cell proliferation in the face of hypoxia. This is a common pathological hallmark of cancers, but can also serve a physiological function, as in the maintenance of stem cell populations that reside in a hypoxic niche. This review will discuss major molecular mechanisms by which hypoxia regulates cell proliferation in different cell populations, with a particular focus on the role of hypoxia-inducible factors.


Asunto(s)
Hipoxia de la Célula/fisiología , Proliferación Celular/fisiología , Animales , Humanos
9.
J Biol Chem ; 288(29): 20768-20775, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23750001

RESUMEN

Hypoxia-inducible factor (HIF) 1 and HIF-2 are heterodimeric proteins composed of an oxygen-regulated HIF-1α or HIF-2α subunit, respectively, and a constitutively expressed HIF-1ß subunit, which mediate adaptive transcriptional responses to hypoxia. Here, we report that Sirt7 (sirtuin-7) negatively regulates HIF-1α and HIF-2α protein levels by a mechanism that is independent of prolyl hydroxylation and that does not involve proteasomal or lysosomal degradation. The effect of Sirt7 was maintained in the presence of the sirtuin inhibitor nicotinamide and upon deletion or mutation of its deacetylase domain, indicating a non-catalytic function. Knockdown of Sirt7 led to an increase in HIF-1α and HIF-2α protein levels and an increase in HIF-1 and HIF-2 transcriptional activity. Thus, we identify a novel molecular function of Sirt7 as a negative regulator of HIF signaling.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Sirtuinas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lisosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Transcripción Genética
10.
J Biol Chem ; 288(15): 10703-14, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23457305

RESUMEN

Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that mediates adaptive responses to hypoxia. We demonstrate that lysosomal degradation of the HIF-1α subunit by chaperone-mediated autophagy (CMA) is a major regulator of HIF-1 activity. Pharmacological inhibitors of lysosomal degradation, such as bafilomycin and chloroquine, increased HIF-1α levels and HIF-1 activity, whereas activators of chaperone-mediated autophagy, including 6-aminonicotinamide and nutrient starvation, decreased HIF-1α levels and HIF-1 activity. In contrast, macroautophagy inhibitors did not increase HIF-1 activity. Transcription factor EB, a master regulator of lysosomal biogenesis, also negatively regulated HIF-1 activity. HIF-1α interacts with HSC70 and LAMP2A, which are core components of the CMA machinery. Overexpression of HSC70 or LAMP2A decreased HIF-1α protein levels, whereas knockdown had the opposite effect. Finally, hypoxia increased the transcription of genes involved in CMA and lysosomal biogenesis in cancer cells. Thus, pharmacological and genetic approaches identify CMA as a major regulator of HIF-1 activity and identify interplay between autophagy and the response to hypoxia.


Asunto(s)
Autofagia/fisiología , Proteínas del Choque Térmico HSC70/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lisosomas/metabolismo , Proteolisis , Animales , Antirreumáticos/farmacología , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Cloroquina/farmacología , Técnicas de Silenciamiento del Gen , Proteínas del Choque Térmico HSC70/genética , Células HeLa , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Lisosomas/genética , Ratones
11.
Methods Mol Biol ; 2755: 179-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319578

RESUMEN

The hypoxia-inducible transcription factors HIF-1 and HIF-2 regulate the response to hypoxia. Both proteins are dimers of an alpha subunit and a shared beta subunit. Under hypoxic conditions, the alpha subunits are stabilized, and the transactivation ability of the HIF-1 transcription factor is induced. Accordingly, assessment of HIF-1α protein levels and HIF transcriptional activity serve as an indirect indicator of hypoxia. In this series of protocols, I describe three methods to probe the HIF pathway.


Asunto(s)
Hipoxia , Polímeros , Humanos
12.
J Biol Chem ; 287(9): 6139-49, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22219185

RESUMEN

Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that promotes angiogenesis, metabolic reprogramming, and other critical aspects of cancer biology. The four-and-a-half LIM domain (FHL) proteins are a family of LIM domain-only proteins implicated in transcriptional regulation and suppression of tumor growth. Here we describe functional interactions between the FHL proteins and HIF-1. FHL1-3 inhibit HIF-1 transcriptional activity and HIF-1α transactivation domain function by oxygen-independent mechanisms. FHL2 directly interacts with HIF-1α to repress transcriptional activity. FHL1 binds to the p300/CBP co-activators and disrupts binding with HIF-1α. FHL3 does not bind to HIF-1α or p300, indicating that it regulates transactivation by a novel molecular mechanism. Expression of the FHL proteins increased upon HIF-1α induction, suggesting the existence of a feedback loop. These results identify FHL proteins as negative regulators of HIF-1 activity, which may provide a mechanism by which they suppress tumor growth.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Proteínas Musculares/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hipoxia de la Célula/fisiología , Retroalimentación Fisiológica/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Proteínas con Dominio LIM/química , Proteínas con Homeodominio LIM/química , Proteínas Musculares/química , Estructura Terciaria de Proteína/fisiología , Factores de Transcripción/química , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Factores de Transcripción p300-CBP/metabolismo
13.
Cell Syst ; 13(12): 1048-1064.e7, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36462504

RESUMEN

Response to hypoxia is a highly regulated process, but little is known about single-cell responses to hypoxic conditions. Using fluorescent reporters of hypoxia response factor-1α (HIF-1α) activity in various cancer cell lines and patient-derived cancer cells, we show that hypoxic responses in individual cancer cells can be highly dynamic and variable. These responses fall into three classes, including oscillatory activity. We identify a molecular mechanism that can account for all three response classes, implicating reactive-oxygen-species-dependent chaperone-mediated autophagy of HIF-1α in a subset of cells. Furthermore, we show that oscillatory response is modulated by the abundance of extracellular lactate in a quorum-sensing-like mechanism. We show that oscillatory HIF-1α activity rescues hypoxia-mediated inhibition of cell division and causes broad suppression of genes downregulated in cancers and activation of genes upregulated in many cancers, suggesting a mechanism for aggressive growth in a subset of hypoxic tumor cells.


Asunto(s)
Autofagia Mediada por Chaperones , Ácido Láctico , Humanos , Ácido Láctico/metabolismo , Línea Celular Tumoral , Hipoxia/metabolismo , Proliferación Celular
14.
J Investig Med High Impact Case Rep ; 8: 2324709620947256, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32755251

RESUMEN

Hypoxia-inducible factor-1 (HIF-1) is a key regulator of erythropoiesis. In this article, we report 3 novel mutations, P378S, A385T, and G206C, on the EGLN1 gene encoding the negative HIF-1α regulator prolyl hydroxylase domain-2 (PHD2) in 3 patients with isolated erythrocytosis. These mutations impair PHD2 protein stability and partially reduce PHD2 activity, leading to increased HIF-1α protein levels in cultured cells.


Asunto(s)
Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Policitemia/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Procolágeno-Prolina Dioxigenasa/genética
18.
Autophagy ; 11(5): 850-1, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25945892

RESUMEN

Hypoxia has long been known to serve as a stimulus for cell cycle arrest. Hypoxia-mediated cell cycle arrest is mediated through the actions of HIF1α (hypoxia inducible factor 1, α subunit [basic helix-loop-helix transcription factor]), which has a nontranscriptional role as an inhibitor of MCM (minichromosome maintenance complex component) helicase activity. We identified chaperone-mediated autophagy as a pathway for selective degradation of HIF1α through lysosomes prior to the onset of DNA replication. CDK2 (cyclin-dependent kinase 2) mediates degradation of HIF1α at the G1/S transition, whereas CDK1 (cyclin-dependent kinase 1) increases HIF1α levels and transcriptional activity prior to the onset of G1 phase. Lysosomal inhibitors induce cell cycle arrest, which is recovered by knockdown of HIF1α and EPAS1/HIF2α. These findings establish lysosomes as essential regulators of cell cycle progression through the degradation of HIF1α.


Asunto(s)
Autofagia , Ciclo Celular , Chaperonas Moleculares/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Modelos Biológicos
19.
Integr Biol (Camb) ; 7(3): 364-72, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25784457

RESUMEN

Direct intercellular transfer of cellular components is a recently described general mechanism of cell­cell communication. It is a more non-specific mode of intercellular communication that is not actively controlled by the participating cells. Though membrane bound proteins and small non-protein cytosolic components have been shown to be transferred between cells, the possibility of transfer of cytosolic proteins has not been clearly established, and its mechanism remains unexplained. Using a cell­cell pair of metastatic melanoma and endothelial cells, known to interact at various stages during cancer progression, we show that cytosolic proteins can indeed be transferred between heterotypic cells. Using precise relative cell patterning we provide evidence that this transfer depends on extent of the interface between heterotypic cell populations. This result is further supported by a mathematical model capturing various experimental conditions. We further demonstrate that cytosolic protein transfer can have important functional consequences for the tumor­stroma interactions, e.g., in heterotypic transfer of constitutively activated BRAF, a common melanoma associated mutation, leading to an enhanced activation of the downstream MAPK pathway. Our results suggest that cytosolic protein transfer can have important consequences for regulation of processes involving physical co-location of heterotypic cell types, particularly in invasive cancer growth.


Asunto(s)
Comunicación Celular , Células Endoteliales/metabolismo , Células Endoteliales/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melanoma/metabolismo , Melanoma/secundario , Línea Celular , Técnicas de Cocultivo/métodos , Humanos , Melanoma/patología , Transporte de Proteínas
20.
Cancer Res ; 73(11): 3285-96, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23539444

RESUMEN

The presence of hypoxia and fibrosis within the primary tumor are two major risk factors for metastasis of human breast cancer. In this study, we demonstrate that hypoxia-inducible factor 1 activates the transcription of genes encoding collagen prolyl hydroxylases that are critical for collagen deposition by breast cancer cells. We show that expression of collagen prolyl hydroxylases promotes cancer cell alignment along collagen fibers, resulting in enhanced invasion and metastasis to lymph nodes and lungs. Finally, we establish the prognostic significance of collagen prolyl hydroxylase mRNA expression in human breast cancer biopsies and show that ethyl 3,4-dihydroxybenzoate, a prolyl hydroxylase inhibitor, decreases tumor fibrosis and metastasis in a mouse model of breast cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Procolágeno-Prolina Dioxigenasa/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Colágeno/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Hidroxibenzoatos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Ratones , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Metástasis de la Neoplasia , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Procolágeno-Prolina Dioxigenasa/biosíntesis , Procolágeno-Prolina Dioxigenasa/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA