RESUMEN
The visible world is founded on the proton, the only composite building block of matter that is stable in nature. Consequently, understanding the formation of matter relies on explaining the dynamics and the properties of the proton's bound state. A fundamental property of the proton involves the response of the system to an external electromagnetic field. It is characterized by the electromagnetic polarizabilities1 that describe how easily the charge and magnetization distributions inside the system are distorted by the electromagnetic field. Moreover, the generalized polarizabilities2 map out the resulting deformation of the densities in a proton subject to an electromagnetic field. They disclose essential information about the underlying system dynamics and provide a key for decoding the proton structure in terms of the theory of the strong interaction that binds its elementary quark and gluon constituents. Of particular interest is a puzzle in the electric generalized polarizability of the proton that remains unresolved for two decades2. Here we report measurements of the proton's electromagnetic generalized polarizabilities at low four-momentum transfer squared. We show evidence of an anomaly to the behaviour of the proton's electric generalized polarizability that contradicts the predictions of nuclear theory and derive its signature in the spatial distribution of the induced polarization in the proton. The reported measurements suggest the presence of a new, not-yet-understood dynamical mechanism in the proton and present notable challenges to the nuclear theory.
RESUMEN
We report the measurement of the helicity asymmetry E for the pπ^{0} and nπ^{+} final states using, for the first time, an elliptically polarized photon beam in combination with a longitudinally polarized target at the Crystal Ball experiment at MAMI. The results agree very well with data that were taken with a circularly polarized photon beam, showing that it is possible to simultaneously measure polarization observables that require linearly (e.g., G) and circularly polarized photons (e.g., E) and a longitudinally polarized target. The new data cover a photon energy range 270-1400 MeV for the pπ^{0} final state (230-842 MeV for the nπ^{+} final state) and the full range of pion polar angles, θ, providing the most precise measurement of the observable E. A moment analysis gives a clear observation of the pη cusp in the pπ^{0} final state.
RESUMEN
A precise measurement of the differential cross sections dσ/dΩ and the linearly polarized photon beam asymmetry Σ_{3} for Compton scattering on the proton below pion threshold has been performed with a tagged photon beam and almost 4π detector at the Mainz Microtron. The incident photons were produced by the recently upgraded Glasgow-Mainz photon tagging facility and impinged on a cryogenic liquid hydrogen target, with the scattered photons detected in the Crystal Ball/TAPS setup. Using the highest statistics Compton scattering data ever measured on the proton along with two effective field theories (both covariant baryon and heavy-baryon) and one fixed-t dispersion relation model, constraining the fits with the Baldin sum rule, we have obtained the proton electric and magnetic polarizabilities with unprecedented precision: α_{E1}=10.99±0.16±0.47±0.17±0.34, ß_{M1}=3.14±0.21±0.24±0.20±0.35; in units of 10^{-4} fm^{3} where the errors are statistical, systematic, spin polarizability dependent, and model dependent.
RESUMEN
Quasielastic ^{12}C(e,e^{'}p) scattering was measured at spacelike 4-momentum transfer squared Q^{2}=8, 9.4, 11.4, and 14.2 (GeV/c)^{2}, the highest ever achieved to date. Nuclear transparency for this reaction was extracted by comparing the measured yield to that expected from a plane-wave impulse approximation calculation without any final state interactions. The measured transparency was consistent with no Q^{2} dependence, up to proton momenta of 8.5 GeV/c, ruling out the quantum chromodynamics effect of color transparency at the measured Q^{2} scales in exclusive (e,e^{'}p) reactions. These results impose strict constraints on models of color transparency for protons.
RESUMEN
The quasifree γ â d â π 0 n ( p ) photon beam asymmetry, Σ , has been measured at photon energies, E γ , from 390 to 610 MeV, corresponding to center of mass energy from 1.271 to 1.424 GeV, for the first time. The data were collected in the A2 hall of the MAMI electron beam facility with the Crystal Ball and TAPS calorimeters covering pion center-of-mass angles from 49 ∘ to 148 ∘ . In this kinematic region, polarization observables are sensitive to contributions from the Δ ( 1232 ) and N(1440) resonances. The extracted values of Σ have been compared to predictions based on partial-wave analyses (PWAs) of the existing pion photoproduction database. Our comparison includes the SAID, MAID and Bonn-Gatchina analyses; while a revised SAID fit, including the new Σ measurements, has also been performed. In addition, isospin symmetry is examined as a way to predict π 0 n photoproduction observables, based on fits to published data in the channels π 0 p , π + n and π - p .
RESUMEN
The double-polarization observable E and helicity-dependent cross sections σ_{1/2}, σ_{3/2} have been measured for the photoproduction of π^{0} pairs off quasifree protons and neutrons at the Mainz MAMI accelerator with the Crystal Ball/TAPS setup. A circularly polarized photon beam was produced by bremsstrahlung from longitudinally polarized electrons and impinged on a longitudinally polarized deuterated butanol target. The reaction products were detected with an almost 4π covering calorimeter. The results reveal for the first time the helicity- and isospin-dependent structure of the γNâNπ^{0}π^{0} reaction. They are compared to predictions from reaction models in view of nucleon resonance contributions and also to a refit of one model that predicted results for the proton and for the neutron target. The comparison of the prediction and the refit demonstrates the large impact of the new data.
RESUMEN
We measure ^{2}H(e,e^{'}p)n cross sections at 4-momentum transfers of Q^{2}=4.5±0.5 (GeV/c)^{2} over a range of neutron recoil momenta p_{r}, reaching up to â¼1.0 GeV/c. We obtain data at fixed neutron recoil angles θ_{nq}=35°, 45°, and 75° with respect to the 3-momentum transfer q[over â]. The new data agree well with previous data, which reached p_{r}â¼500 MeV/c. At θ_{nq}=35° and 45°, final state interactions, meson exchange currents, and isobar currents are suppressed and the plane wave impulse approximation provides the dominant cross section contribution. We compare the new data to recent theoretical calculations, where we observe a significant discrepancy for recoil momenta p_{r}>700 MeV/c.
RESUMEN
We report a measurement of the spin polarization of the recoiling neutron in deuterium photodisintegration, utilizing a new large acceptance polarimeter within the Crystal Ball at MAMI. The measured photon energy range of 300-700 MeV provides the first measurement of recoil neutron polarization at photon energies where the quark substructure of the deuteron plays a role, thereby providing important new constraints on photodisintegration mechanisms. A very high neutron polarization in a narrow structure centered around E_{γ}â¼570 MeV is observed, which is inconsistent with current theoretical predictions employing nucleon resonance degrees of freedom. A Legendre polynomial decomposition suggests this behavior could be related to the excitation of the d^{*}(2380) hexaquark.
RESUMEN
The Spin Asymmetries of the Nucleon Experiment measured two double spin asymmetries using a polarized proton target and polarized electron beam at two beam energies, 4.7 and 5.9 GeV. A large-acceptance open-configuration detector package identified scattered electrons at 40° and covered a wide range in Bjorken x (0.3
RESUMEN
We present extractions of the nucleon nonsinglet moments utilizing new precision data on the deuteron F_{2} structure function at large Bjorken-x determined via the Rosenbluth separation technique at Jefferson Lab Experimental Hall C. These new data are combined with a complementary set of data on the proton previously measured in Hall C at similar kinematics and world datasets on the proton and deuteron at lower x measured at SLAC and CERN. The new Jefferson Lab data provide coverage of the upper third of the x range, crucial for precision determination of the higher moments. In contrast to previous extractions, these moments have been corrected for nuclear effects in the deuteron using a new global fit to the deuteron and proton data. The obtained experimental moments represent an order of magnitude improvement in precision over previous extractions using high x data. Moreover, recent exciting developments in lattice QCD calculations provide a first ever comparison of these new experimental results with calculations of moments carried out at the physical pion mass, as well as a new approach that first calculates the quark distributions directly before determining moments.
RESUMEN
Backward-angle meson electroproduction above the resonance region, which was previously ignored, is anticipated to offer unique access to the three quark plus sea component of the nucleon wave function. In this Letter, we present the first complete separation of the four electromagnetic structure functions above the resonance region in exclusive ω electroproduction off the proton, epâe^{'}pω, at central Q^{2} values of 1.60, 2.45 GeV^{2}, at W=2.21 GeV. The results of our pioneering -u≈-u_{min} study demonstrate the existence of a unanticipated backward-angle cross section peak and the feasibility of full L/T/LT/TT separations in this never explored kinematic territory. At Q^{2}=2.45 GeV^{2}, the observed dominance of σ_{T} over σ_{L}, is qualitatively consistent with the collinear QCD description in the near-backward regime, in which the scattering amplitude factorizes into a hard subprocess amplitude and baryon to meson transition distribution amplitudes: universal nonperturbative objects only accessible through backward-angle kinematics.
RESUMEN
We report the first longitudinal-transverse separation of the deeply virtual exclusive π^{0} electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions dσ_{L}/dt, dσ_{T}/dt, dσ_{LT}/dt, and dσ_{TT}/dt are extracted as a function of the momentum transfer to the recoil system at Q^{2}=1.75 GeV^{2} and x_{B}=0.36. The edâedπ^{0} cross sections are found compatible with the small values expected from theoretical models. The enâenπ^{0} cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results with previous measurements of π^{0} electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section.
RESUMEN
The reactions γpâηp and γpâη^{'}p are measured from their thresholds up to the center-of-mass energy W=1.96 GeV with the tagged-photon facilities at the Mainz Microtron, MAMI. Differential cross sections are obtained with unprecedented statistical accuracy, providing fine energy binning and full production-angle coverage. A strong cusp is observed in the total cross section for η photoproduction at the energies in the vicinity of the η^{'} threshold, W=1896 MeV (E_{γ}=1447 MeV). Within the framework of a revised ηMAID isobar model, the cusp, in connection with a steep rise of the η^{'} total cross section from its threshold, can only be explained by a strong coupling of the poorly known N(1895)1/2^{-} state to both ηp and η^{'}p. Including the new high-accuracy results in the ηMAID fit to available η and η^{'} photoproduction data allows the determination of the N(1895)1/2^{-} properties.
RESUMEN
We present deeply virtual π^{0} electroproduction cross-section measurements at x_{B}=0.36 and three different Q^{2} values ranging from 1.5 to 2 GeV^{2}, obtained from Jefferson Lab Hall A experiment E07-007. The Rosenbluth technique is used to separate the longitudinal and transverse responses. Results demonstrate that the cross section is dominated by its transverse component and, thus, is far from the asymptotic limit predicted by perturbative quantum chromodynamics. Nonetheless, an indication of a nonzero longitudinal contribution is provided by the measured interference term σ_{LT}. Results are compared with several models based on the leading-twist approach of generalized parton distributions (GPDs). In particular, a fair agreement is obtained with models in which the scattering amplitude includes convolution terms of chiral-odd (transversity) GPDs of the nucleon with the twist-3 pion distribution amplitude. This experiment, together with previous extensive unseparated measurements, provides strong support to the exciting idea that transversity GPDs can be accessed via neutral pion electroproduction in the high-Q^{2} regime.
RESUMEN
The double polarization observable E and the helicity dependent cross sections σ_{1/2} and σ_{3/2} were measured for η photoproduction from quasifree protons and neutrons. The circularly polarized tagged photon beam of the A2 experiment at the Mainz MAMI accelerator was used in combination with a longitudinally polarized deuterated butanol target. The almost 4π detector setup of the Crystal Ball and TAPS is ideally suited to detect the recoil nucleons and the decay photons from ηâ2γ and ηâ3π^{0}. The results show that the narrow structure previously observed in η photoproduction from the neutron is only apparent in σ_{1/2} and hence, most likely related to a spin-1/2 amplitude. Nucleon resonances that contribute to this partial wave in η production are only N 1/2^{-} (S_{11}) and N 1/2^{+} (P_{11}). Furthermore, the extracted Legendre coefficients of the angular distributions for σ_{1/2} are in good agreement with recent reaction model predictions assuming a narrow resonance in the P_{11} wave as the origin of this structure.
RESUMEN
Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θ_{cm}^{p}=70°. The longitudinal transfer K_{LL}, measured to be 0.645±0.059±0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ~3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude.
RESUMEN
The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to extract the nucleon spin polarizabilities is through polarized Compton scattering. Double-polarized Compton scattering asymmetries on the proton were measured in the Δ(1232) region using circularly polarized incident photons and a transversely polarized proton target at the Mainz Microtron. Fits to asymmetry data were performed using a dispersion model calculation and a baryon chiral perturbation theory calculation, and a separation of all four proton spin polarizabilities in the multipole basis was achieved. The analysis based on a dispersion model calculation yields γ(E1E1)=-3.5±1.2, γ(M1M1)=3.16±0.85, γ(E1M2)=-0.7±1.2, and γ(M1E2)=1.99±0.29, in units of 10(-4) fm(4).
RESUMEN
We present new data for the transverse target asymmetry T and the very first data for the beam-target asymmetry F in the γ[over â]p[over â]âηp reaction up to a center-of-mass energy of W=1.9 GeV. The data were obtained with the Crystal-Ball/TAPS detector setup at the Glasgow tagged photon facility of the Mainz Microtron MAMI. All existing model predictions fail to reproduce the new data indicating a significant impact on our understanding of the underlying dynamics of η meson photoproduction. The peculiar nodal structure observed in existing T data close to threshold is not confirmed.
RESUMEN
Precise angular distributions have been measured for the first time for the photoproduction of π0 mesons off neutrons bound in the deuteron. The effects from nuclear Fermi motion have been eliminated by a complete kinematic reconstruction of the final state. The influence of final-state-interaction effects has been estimated by a comparison of the reaction cross section for quasifree protons bound in the deuteron to the results for free protons and then applied as a correction to the quasifree neutron data. The experiment was performed at the tagged photon facility of the Mainz Microtron MAMI with the Crystal Ball and TAPS detector setup for incident photon energies between 0.45 and 1.4 GeV. The results are compared to the predictions from reaction models and partial-wave analyses based on data from other isospin channels. The model predictions show large discrepancies among each other and the present data will provide much tighter constraints. This is demonstrated by the results of a new analysis in the framework of the Bonn-Gatchina coupled-channel analysis which included the present data.
RESUMEN
The study of exclusive π(±) electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio RL=σL(π-)/σL(π+) is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of RT=σT(π-)/σT(π+) from unity at small -t, to 1/4 at large -t, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Furthermore, the mentioned ratios may show an earlier approach to perturbative QCD than the individual cross sections. We have performed the first complete separation of the four unpolarized electromagnetic structure functions above the dominant resonances in forward, exclusive π(±) electroproduction on the deuteron at central Q(2) values of 0.6, 1.0, 1.6 GeV(2) at W=1.95 GeV, and Q(2)=2.45 GeV(2) at W=2.22 GeV. Here, we present the L and T cross sections, with emphasis on RL and RT, and compare them with theoretical calculations. Results for the separated ratio RL indicate dominance of the pion-pole diagram at low -t, while results for RT are consistent with a transition between pion knockout and quark knockout mechanisms.