Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Physiol ; 598(7): 1377-1392, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30674086

RESUMEN

KEY POINTS: Ninety-eight per cent of patients with Duchenne muscular dystrophy (DMD) develop cardiomyopathy, with 40% developing heart failure. While increased propensity for mitochondrial induction of cell death has been observed in left ventricle, it remains unknown whether this is linked to impaired mitochondrial respiratory control and elevated H2 O2 emission prior to the onset of cardiomyopathy. Classic mouse models of DMD demonstrate hyper-regeneration in skeletal muscle which may mask mitochondrial abnormalities. Using a model with less regenerative capacity that is more akin to DMD patients, we observed elevated left ventricular mitochondrial H2 O2 and impaired oxidative phosphorylation in the absence of cardiac remodelling or overt cardiac dysfunction at 4 weeks. These impairments were associated with dysfunctions at complex I, governance by ADP and creatine-dependent phosphate shuttling, which results in a less efficient response to energy demands. Mitochondria may be a therapeutic target for the treatment of cardiomyopathy in DMD. ABSTRACT: In Duchenne muscular dystrophy (DMD), mitochondrial dysfunction is predicted as a response to numerous cellular stressors, yet the contribution of mitochondria to the onset of cardiomyopathy remains unknown. To resolve this uncertainty, we designed in vitro assessments of mitochondrial bioenergetics to model mitochondrial control parameters that influence cardiac function. Both left ventricular mitochondrial responsiveness to the central bioenergetic controller ADP and the ability of creatine to facilitate mitochondrial-cytoplasmic phosphate shuttling were assessed. These measurements were performed in D2.B10-DMDmdx /2J mice - a model that demonstrates skeletal muscle atrophy and weakness due to limited regenerative capacities and cardiomyopathy more akin to people with DMD than classic models. At 4 weeks of age, there was no evidence of cardiac remodelling or cardiac dysfunction despite impairments in ADP-stimulated respiration and ADP attenuation of H2 O2 emission. These impairments were seen at both submaximal and maximal ADP concentrations despite no reductions in mitochondrial content markers. The ability of creatine to enhance ADP's control of mitochondrial bioenergetics was also impaired, suggesting an impairment in mitochondrial creatine kinase-dependent phosphate shuttling. Susceptibly to permeability transition pore opening and the subsequent activation of cell death pathways remained unchanged. Mitochondrial H2 O2 emission was elevated despite no change in markers of irreversible oxidative damage, suggesting alternative redox signalling mechanisms should be explored. These findings demonstrate that selective mitochondrial dysfunction precedes the onset of overt cardiomyopathy in D2.mdx mice, suggesting that improving mitochondrial bioenergetics by restoring ADP, creatine-dependent phosphate shuttling and complex I should be considered for treating DMD patients.


Asunto(s)
Cardiopatías , Distrofia Muscular de Duchenne , Animales , Metabolismo Energético , Cardiopatías/metabolismo , Ventrículos Cardíacos , Humanos , Ratones , Ratones Endogámicos mdx , Mitocondrias/metabolismo , Distrofia Muscular de Duchenne/metabolismo
2.
J Physiol ; 598(4): 683-697, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31845331

RESUMEN

KEY POINTS: Although the role of TBC1D1 within the heart remains unknown, expression of TBC1D1 increases in the left ventricle following an acute infarction, suggesting a biological importance within this tissue. We investigated the mechanistic role of TBC1D1 within the heart, aiming to establish the consequences of attenuating TBC1D1 signalling in the development of diabetic cardiomyopathy, as well as to determine potential sex differences. TBC1D1 ablation increased plasma membrane fatty acid binding protein content and myocardial palmitate oxidation. Following high-fat feeding, TBC1D1 ablation dramatically increased fibrosis and induced end-diastolic dysfunction in both male and female rats in the absence of changes in mitochondrial bioenergetics. Altogether, independent of sex, ablating TBC1D1 predisposes the left ventricle to pathological remodelling following high-fat feeding, and suggests TBC1D1 protects against diabetic cardiomyopathy. ABSTRACT: TBC1D1, a Rab-GTPase activating protein, is involved in the regulation of glucose handling and substrate metabolism within skeletal muscle, and is essential for maintaining pancreatic ß-cell mass and insulin secretion. However, the function of TBC1D1 within the heart is largely unknown. Therefore, we examined the role of TBC1D1 in the left ventricle and the functional consequence of ablating TBC1D1 on the susceptibility to high-fat diet-induced abnormalities. Since mutations within TBC1D1 (R125W) display stronger associations with clinical parameters in women, we further examined possible sex differences in the predisposition to diabetic cardiomyopathy. In control-fed animals, TBC1D1 ablation did not alter insulin-stimulated glucose uptake, or echocardiogram parameters, but increased accumulation of a plasma membrane fatty acid transporter and the capacity for palmitate oxidation. When challenged with an 8 week high-fat diet, TBC1D1 knockout rats displayed a four-fold increase in fibrosis compared to wild-type animals, and this was associated with diastolic dysfunction, suggesting a predisposition to diet-induced cardiomyopathy. Interestingly, high-fat feeding only induced cardiac hypertrophy in male TBC1D1 knockout animals, implicating a possible sex difference. Mitochondrial respiratory capacity and substrate sensitivity to pyruvate and ADP were not altered by diet or TBC1D1 ablation, nor were markers of oxidative stress, or indices of overt heart failure. Altogether, independent of sex, ablation of TBC1D1 not only increased the susceptibility to high-fat diet-induced diastolic dysfunction and left ventricular fibrosis, independent of sex, but also predisposed male animals to the development of cardiac hypertrophy. These data suggest that TBC1D1 may exert cardioprotective effects in the development of diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías/fisiopatología , Proteínas Activadoras de GTPasa/fisiología , Proteínas/fisiología , Animales , Cardiomiopatías/genética , Dieta Alta en Grasa , Femenino , Proteínas Activadoras de GTPasa/genética , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Ventrículos Cardíacos/fisiopatología , Insulina , Masculino , Músculo Esquelético , Proteínas/genética , Ratas , Factores Sexuales
3.
Am J Physiol Heart Circ Physiol ; 318(5): H1139-H1158, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32216614

RESUMEN

Traditionally, the evaluation of cardiac function has focused on systolic function; however, there is a growing appreciation for the contribution of diastolic function to overall cardiac health. Given the emerging interest in evaluating diastolic function in all models of heart failure, there is a need for sensitivity, accuracy, and precision in the hemodynamic assessment of diastolic function. Hemodynamics measure cardiac pressures in vivo, offering a direct assessment of diastolic function. In this review, we summarize the underlying principles of diastolic function, dividing diastole into two phases: 1) relaxation and 2) filling. We identify parameters used to comprehensively evaluate diastolic function by hemodynamics, clarify how each parameter is obtained, and consider the advantages and limitations associated with each measure. We provide a summary of the sensitivity of each diastolic parameter to loading conditions. Furthermore, we discuss differences that can occur in the accuracy of diastolic and systolic indices when generated by automated software compared with custom software analysis and the magnitude each parameter is influenced during inspiration with healthy breathing and a mild breathing load, commonly expected in heart failure. Finally, we identify key variables to control (e.g., body temperature, anesthetic, sampling rate) when collecting hemodynamic data. This review provides fundamental knowledge for users to succeed in troubleshooting and guidelines for evaluating diastolic function by hemodynamics in experimental models of heart failure.


Asunto(s)
Presión Sanguínea , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/fisiopatología , Guías de Práctica Clínica como Asunto , Función Ventricular , Animales , Pruebas de Función Cardíaca/métodos , Pruebas de Función Cardíaca/normas
4.
J Physiol ; 596(15): 3391-3410, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29604069

RESUMEN

KEY POINTS: In the present study, we provide evidence for divergent physiological responses to moderate compared to severe hypoxia, addressing an important knowledge gap related to severity, duration and after-effects of hypoxia encountered in cardiopulmonary situations. The physiological responses to moderate and severe hypoxia were not proportional, linear or concurrent with the time-of-day. Hypoxia elicited severity-dependent physiological responses that either persisted or fluctuated throughout normoxic recovery. The physiological basis for these distinct cardiovascular responses implicates a shift in the sympathovagal set point and probably not molecular changes at the artery resulting from hypoxic stress. ABSTRACT: Hypoxia is both a consequence and cause of many acute and chronic diseases. Severe hypoxia causes hypertension with cardiovascular sequelae; however, the rare studies using moderate severities of hypoxia indicate that it can be beneficial, suggesting that hypoxia may not always be detrimental. Comparisons between studies are difficult because of the varied classifications of hypoxic severities, methods of delivery and use of anaesthetics. Thus, to investigate the long-term effects of moderate hypoxia on cardiovascular health, radiotelemetry was used to obtain in vivo physiological measurements in unanaesthetized mice during 24 h of either moderate (FIO2=0.15) or severe (FIO2=0.09) hypoxia, followed by 72 h of normoxic recovery. Systolic blood pressure was decreased during recovery following moderate hypoxia but increased following severe hypoxia. Moderate and severe hypoxia increased haeme oxygenase-1 expression during recovery, suggesting parity in hypoxic stress at the level of the artery. Severe but not moderate hypoxia increased the low/high frequency ratio of heart rate variability 72 h post-hypoxia, indicating a shift in sympathovagal balance. Moderate hypoxia dampened the amplitude of circadian rhythm, whereas severe disrupted rhythm during the entire insult, with perturbations persisting throughout normoxic recovery. Thus, hypoxic severity differentially regulates circadian blood pressure.


Asunto(s)
Hipoxia/fisiopatología , Animales , Presión Sanguínea , Frecuencia Cardíaca , Masculino , Ratones Endogámicos C57BL
5.
Am J Physiol Regul Integr Comp Physiol ; 315(2): R191-R204, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29513565

RESUMEN

Supplementation with dietary inorganic nitrate ([Formula: see text]) is increasingly recognized to confer cardioprotective effects in both healthy and clinical populations. While the mechanism(s) remains ambiguous, in skeletal muscle oral consumption of NaNO3 has been shown to improve mitochondrial efficiency. Whether NaNO3 has similar effects on mitochondria within the heart is unknown. Therefore, we comprehensively investigated the effect of NaNO3 supplementation on in vivo left ventricular (LV) function and mitochondrial bioenergetics. Healthy male Sprague-Dawley rats were supplemented with NaNO3 (1 g/l) in their drinking water for 7 days. Echocardiography and invasive hemodynamics were used to assess LV morphology and function. Blood pressure (BP) was measured by tail-cuff and invasive hemodynamics. Mitochondrial bioenergetics were measured in LV isolated mitochondria and permeabilized muscle fibers by high-resolution respirometry and fluorometry. Nitrate decreased ( P < 0.05) BP, LV end-diastolic pressure, and maximal LV pressure. Rates of LV relaxation (when normalized to mean arterial pressure) tended ( P = 0.13) to be higher with nitrate supplementation. However, nitrate did not alter LV mitochondrial respiration, coupling efficiency, or oxygen affinity in isolated mitochondria or permeabilized muscle fibers. In contrast, nitrate increased ( P < 0.05) the propensity for mitochondrial H2O2 emission in the absence of changes in cellular redox state and decreased the sensitivity of mitochondria to ADP (apparent Km). These results add to the therapeutic potential of nitrate supplementation in cardiovascular diseases and suggest that nitrate may confer these beneficial effects via mitochondrial redox signaling.


Asunto(s)
Suplementos Dietéticos , Metabolismo Energético/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Nitratos/farmacología , Adenosina Difosfato/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Masculino , Mitocondrias Cardíacas/metabolismo , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos , Presión Ventricular/efectos de los fármacos
6.
Can J Physiol Pharmacol ; 96(11): 1060-1068, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30102865

RESUMEN

During physiological stress (e.g., exercise, hypoxia), blood flow is shunted to specific anatomical regions to protect critical organs; yet, splenic blood flow in these circumstances remains to be investigated. Despite being classically viewed as a non-critical organ, recent experimental and epidemiological evidence suggests the spleen plays a significant role in cardiovascular pathophysiology. We hypothesized that splenic blood flow is prioritized in the development of heart failure (i.e., chronic state of reduced cardiac output). Five-week-old male Wistar rats were randomized for either myocardial infarction (MI; n = 58) or sham (n = 56) surgery. At 2, 5, and 9 weeks post-surgery, Doppler ultrasound measurements of the splenic, left renal, left common carotid, and left femoral arteries were performed. Cardiac function was assessed at all time points using echocardiography and at 9 weeks post-surgery using invasive hemodynamic analysis. Splenic and cerebral blood flow was preferentially maintained at 9 weeks post-MI, whereas blood flow to the lower limb and kidney were reduced. Spleen size increased by 5 weeks post-MI and remained elevated. Splenic blood flow was maintained in conditions of decreased cardiac output, when other tissues showed decreased blood flow. The maintenance of blood flow in the face of decreased cardiac output indicates that splenic function is being prioritized during heart failure.


Asunto(s)
Gasto Cardíaco , Insuficiencia Cardíaca/fisiopatología , Infarto del Miocardio/fisiopatología , Flujo Sanguíneo Regional , Bazo/irrigación sanguínea , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ecocardiografía , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Humanos , Masculino , Infarto del Miocardio/etiología , Tamaño de los Órganos , Ratas , Ratas Wistar , Bazo/diagnóstico por imagen , Bazo/fisiopatología , Ultrasonografía Doppler
7.
Am J Physiol Heart Circ Physiol ; 310(5): H572-86, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26702144

RESUMEN

Dyspnea and reduced exercise capacity, caused, in part, by respiratory muscle dysfunction, are common symptoms in patients with heart failure (HF). However, the etiology of diaphragmatic dysfunction has not been identified. To investigate the effects of HF on diaphragmatic function, models of HF were surgically induced in CD-1 mice by transverse aortic constriction (TAC) and acute myocardial infarction (AMI), respectively. Assessment of myocardial function, isolated diaphragmatic strip function, myofilament force-pCa relationship, and phosphorylation status of myofilament proteins was performed at either 2 or 18 wk postsurgery. Echocardiography and invasive hemodynamics revealed development of HF by 18 wk postsurgery in both models. In vitro diaphragmatic force production was preserved in all groups while morphometric analysis revealed diaphragmatic atrophy and fibrosis in 18 wk TAC and AMI groups. Isometric force-pCa measurements of myofilament preparations revealed reduced Ca(2+) sensitivity of force generation and force generation at half-maximum and maximum Ca(2+) activation in 18 wk TAC. The rate of force redevelopment (ktr) was reduced in all HF groups at high levels of Ca(2+) activation. Finally, there were significant changes in the myofilament phosphorylation status of the 18 wk TAC group. This includes a decrease in the phosphorylation of troponin T, desmin, myosin light chain (MLC) 1, and MLC 2 as well as a shift in myosin isoforms. These results indicate that there are multiple changes in diaphragmatic myofilament function, which are specific to the type and stage of HF and occur before overt impairment of in vitro force production.


Asunto(s)
Diafragma/metabolismo , Disnea/metabolismo , Insuficiencia Cardíaca/metabolismo , Contracción Isométrica , Proteínas Musculares/metabolismo , Fuerza Muscular , Miofibrillas/metabolismo , Animales , Señalización del Calcio , Diafragma/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Disnea/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Técnicas In Vitro , Masculino , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Fosforilación , Factores de Tiempo , Remodelación Ventricular
8.
Sci Rep ; 11(1): 17223, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446745

RESUMEN

Cardiovascular and respiratory systems are anatomically and functionally linked; inspiration produces negative intrathoracic pressures that act on the heart and alter cardiac function. Inspiratory pressures increase with heart failure and can exceed the magnitude of ventricular pressure during diastole. Accordingly, respiratory pressures may be a confounding factor to assessing cardiac function. While the interaction between respiration and the heart is well characterized, the extent to which systolic and diastolic indices are affected by inspiration is unknown. Our objective was to understand how inspiratory pressure affects the hemodynamic assessment of cardiac function. To do this, we developed custom software to assess and separate indices of systolic and diastolic function into inspiratory, early expiratory, and late expiratory phases of respiration. We then compared cardiac parameters during normal breathing and with various respiratory loads. Variations in inspiratory pressure had a small impact on systolic pressure and function. Conversely, diastolic pressure strongly correlated with negative inspiratory pressure. Cardiac pressures were less affected by respiration during expiration; late expiration was the most stable respiratory phase. In conclusion, inspiration is a large confounding influence on diastolic pressure, but minimally affects systolic pressure. Performing cardiac hemodynamic analysis by accounting for respiratory phase yields more accuracy and analytic confidence to the assessment of diastolic function.


Asunto(s)
Pruebas de Función Cardíaca/métodos , Corazón/fisiología , Hemodinámica/fisiología , Respiración , Mecánica Respiratoria/fisiología , Animales , Diástole/fisiología , Espiración/fisiología , Humanos , Inhalación/fisiología , Masculino , Ratas Sprague-Dawley , Sístole/fisiología , Tráquea/fisiología
9.
J Cachexia Sarcopenia Muscle ; 10(3): 643-661, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30938481

RESUMEN

BACKGROUND: Muscle wasting and weakness in Duchenne muscular dystrophy (DMD) causes severe locomotor limitations and early death due in part to respiratory muscle failure. Given that current clinical practice focuses on treating secondary complications in this genetic disease, there is a clear need to identify additional contributions in the aetiology of this myopathy for knowledge-guided therapy development. Here, we address the unresolved question of whether the complex impairments observed in DMD are linked to elevated mitochondrial H2 O2 emission in conjunction with impaired oxidative phosphorylation. This study performed a systematic evaluation of the nature and degree of mitochondrial-derived H2 O2 emission and mitochondrial oxidative dysfunction in a mouse model of DMD by designing in vitro bioenergetic assessments that attempt to mimic in vivo conditions known to be critical for the regulation of mitochondrial bioenergetics. METHODS: Mitochondrial bioenergetics were compared with functional and histopathological indices of myopathy early in DMD (4 weeks) in D2.B10-DMDmdx /2J mice (D2.mdx)-a model that demonstrates severe muscle weakness. Adenosine diphosphate's (ADP's) central effect of attenuating H2 O2 emission while stimulating respiration was compared under two models of mitochondrial-cytoplasmic phosphate exchange (creatine independent and dependent) in muscles that stained positive for membrane damage (diaphragm, quadriceps, and white gastrocnemius). RESULTS: Pathway-specific analyses revealed that Complex I-supported maximal H2 O2 emission was elevated concurrent with a reduced ability of ADP to attenuate emission during respiration in all three muscles (mH2 O2 : +17 to +197% in D2.mdx vs. wild type). This was associated with an impaired ability of ADP to stimulate respiration at sub-maximal and maximal kinetics (-17 to -72% in D2.mdx vs. wild type), as well as a loss of creatine-dependent mitochondrial phosphate shuttling in diaphragm and quadriceps. These changes largely occurred independent of mitochondrial density or abundance of respiratory chain complexes, except for quadriceps. This muscle was also the only one exhibiting decreased calcium retention capacity, which indicates increased sensitivity to calcium-induced permeability transition pore opening. Increased H2 O2 emission was accompanied by a compensatory increase in total glutathione, while oxidative stress markers were unchanged. Mitochondrial bioenergetic dysfunctions were associated with induction of mitochondrial-linked caspase 9, necrosis, and markers of atrophy in some muscles as well as reduced hindlimb torque and reduced respiratory muscle function. CONCLUSIONS: These results provide evidence that Complex I dysfunction and loss of central respiratory control by ADP and creatine cause elevated oxidant generation during impaired oxidative phosphorylation. These dysfunctions may contribute to early stage disease pathophysiology and support the growing notion that mitochondria are a potential therapeutic target in this disease.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/patología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/citología , Distrofia Muscular de Duchenne/genética , Oxidación-Reducción , Fosforilación Oxidativa , Estrés Oxidativo
10.
Front Physiol ; 9: 472, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867532

RESUMEN

A growing proportion of heart failure (HF) patients present with impairments in both ventricles. Experimental pressure-overload (i.e., transverse aortic constriction, TAC) induces left ventricle (LV) hypertrophy and failure, as well as right ventricle (RV) dysfunction. However, little is known about the coordinated progression of biventricular dysfunction that occurs in TAC. Here we investigated the time course of systolic and diastolic function in both the LV and RV concurrently to improve our understanding of the chronology of events in TAC. Hemodynamic, histological, and morphometric assessments were obtained from the LV and RV at 2, 4, 9, and 18 weeks post-surgery. Results: Systolic pressures peaked in both ventricles at 4 weeks, thereafter steadily declining in the LV, while remaining elevated in the RV. The LV and RV followed different structural and functional timelines, suggesting the patterns in one ventricle are independent from the opposing ventricle. RV hypertrophy/fibrosis and pulmonary arterial remodeling confirmed a progressive right-sided pathology. We further identified both compensation and decompensation in the LV with persistent concentric hypertrophy in both phases. Finally, diastolic impairments in both ventricles manifested as an intricate progression of multiple parameters that were not in agreement until overt systolic failure was evident. Conclusion: We establish pulmonary hypertension was secondary to LV dysfunction, confirming TAC is a model of type II pulmonary hypertension. This study also challenges some common assumptions in experimental HF (e.g., the relationship between fibrosis and filling pressure) while addressing a knowledge gap with respect to temporality of RV remodeling in pressure-overload.

11.
J Am Soc Echocardiogr ; 30(6): 612-623.e1, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28528655

RESUMEN

BACKGROUND: Echocardiography is a valuable noninvasive technique to estimate cardiac output (CO) from the left ventricle (LV) not only in clinical practice but also in small-animal experiments. CO is used to grade cardiac function and is especially important when investigating cardiac injury (e.g., myocardial infarction [MI]). Critically, MI deforms the LV, invalidating the assumptions fundamental to calculating of cardiac volumes directly from the LV. Thus, the purpose of this study was to determine if Doppler-derived blood flow through the pulmonary trunk (pulmonary flow [PF]) was an improved method over conventional LV-dependent echocardiography to accurately determine CO after MI. METHODS: Variations in CO were induced either by transverse aortic constriction or MI. Echocardiography was performed in healthy (n = 27), transverse aortic constriction (n = 25), and MI (n = 41) mice. CO calculated from PF (pulsed-wave Doppler) was internally compared with CO calculated from left ventricular images using M-mode (Teichholz formula) and the single-plane ellipsoid two-dimensional (2D) formula and externally compared with the gold standard, flow probe CO. RESULTS: In healthy mice, all three echocardiographic methods (M-mode, 2D, and PF) correlated well with flow probe-derived CO. In MI mice, only PF CO values correlated well with flow probe values. Bland-Altman analysis confirmed that PF was improved over M-mode and 2D echocardiography. Inter- and intrauser variability of PF CO was reduced, and both inter- and intraclass correlation coefficients were improved compared with either M-mode or 2D CO calculations. CONCLUSIONS: PF CO calculated from pulsed-wave Doppler through the pulmonary trunk was an improved method of estimating CO over LV-dependent formulas after MI.


Asunto(s)
Velocidad del Flujo Sanguíneo , Gasto Cardíaco , Ecocardiografía Doppler/métodos , Pruebas de Función Cardíaca/métodos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/fisiopatología , Circulación Pulmonar , Animales , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Sci Transl Med ; 9(390)2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28515334

RESUMEN

Diaphragmatic weakness is a feature of heart failure (HF) associated with dyspnea and exertional fatigue. Most studies have focused on advanced stages of HF, leaving the cause unresolved. The long-standing theory is that pulmonary edema imposes a mechanical stress, resulting in diaphragmatic remodeling, but stable HF patients rarely exhibit pulmonary edema. We investigated how diaphragmatic weakness develops in two mouse models of pressure overload-induced HF. As in HF patients, both models had increased eupneic respiratory pressures and ventilatory drive. Despite the absence of pulmonary edema, diaphragmatic strength progressively declined during pressure overload; this decline correlated with a reduction in diaphragm cross-sectional area and preceded evidence of muscle weakness. We uncovered a functional codependence between angiotensin II and ß-adrenergic (ß-ADR) signaling, which increased ventilatory drive. Chronic overdrive was associated with increased PERK (double-stranded RNA-activated protein kinase R-like ER kinase) expression and phosphorylation of EIF2α (eukaryotic translation initiation factor 2α), which inhibits protein synthesis. Inhibition of ß-ADR signaling after application of pressure overload normalized diaphragm strength, Perk expression, EIF2α phosphorylation, and diaphragmatic cross-sectional area. Only drugs that were able to penetrate the blood-brain barrier were effective in treating ventilatory overdrive and preventing diaphragmatic atrophy. These data provide insight into why similar drugs have different benefits on mortality and symptomatology, despite comparable cardiovascular effects.


Asunto(s)
Insuficiencia Cardíaca/terapia , Debilidad Muscular/fisiopatología , Angiotensina II/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Diafragma/metabolismo , Diafragma/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Insuficiencia Cardíaca/fisiopatología , Pulmón/metabolismo , Masculino , Ratones , Debilidad Muscular/metabolismo , Fosforilación/fisiología , Respiración , Transducción de Señal/fisiología
13.
Med Sci Sports Exerc ; 47(10): 2034-42, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25785928

RESUMEN

INTRODUCTION: Adipose tissue insulin action is impaired in obesity and is associated with inflammation, macrophage infiltration, and polarization toward a proinflammatory phenotype. Acute exercise can reduce markers of adipose inflammation, including interleukin (IL) 6, in parallel with improvements in insulin action; however, others have provided evidence that IL-6 has anti-inflammatory properties. PURPOSE: This study aimed to examine the relation between IL-6 signaling, macrophage infiltration, and polarization and insulin action in inguinal fat after acute exercise in obese, insulin-resistant mice. METHODS: Male C57BL/6 mice were fed a low-fat diet (10% kcal lard) or a high-fat diet (HFD, 60% kcal lard) for 7 wk and then underwent an acute bout of exercise (2-h treadmill running: 15 m·min, 5% incline). RESULTS: The HFD resulted in increased body mass, glucose intolerance, and attenuated insulin-induced AKT Thr308 phosphorylation in inguinal fat. This was accompanied by increases in indices of macrophage infiltration (F4/80, CD68, and monocyte chemoattractant protein-1 expression) and polarization toward an M1 phenotype (increased expression of CD11c, CD11c/galactose-type C-type lectin 1, and inducible nitric oxide synthase). Immunofluorescence imaging demonstrated increased F4/80- and CD11c-positive cells with the HFD. Two hours after exercise, the insulin-induced activation of AKT Th308 phosphorylation was recovered in HFD mice. This was accompanied by an upregulation of IL-6 and IL-10 signaling, as demonstrated by increased expression of IL-6, IL-10, and SOCS3 as well as STAT3 phosphorylation. Furthermore, acute exercise resulted in a shift toward reduction in M1 polarization indicated by a decrease in the ratio of CD11c to galactose-type C-type lectin 1 mRNA as well as a decline in F4/80- and CD11c-positive cells. CONCLUSIONS: The results suggest a link between exercise-induced increases in IL-6, reductions in indices of M1 macrophages, and increased IL-10, a reputed anti-inflammatory cytokine with insulin-sensitizing properties.


Asunto(s)
Tejido Adiposo/metabolismo , Insulina/metabolismo , Interleucina-6/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Índice de Masa Corporal , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Resistencia a la Insulina , Interleucina-10/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Carrera/fisiología
14.
J Appl Physiol (1985) ; 119(11): 1347-54, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26472868

RESUMEN

The purpose of this investigation was to determine whether exercise-induced increases in adipose tissue interleukin 6 (IL-6) signaling occurred as part of a larger proinflammatory response to exercise and whether the induction of IL-6 signaling with acute exercise was altered in trained mice in parallel with changes in the IL-6 receptor complex. Sedentary and trained C57BL/6J mice were challenged with an acute bout of exercise. Adipose tissue and plasma were collected immediately and 4 h afterward and analyzed for changes in indices of IL-6 signaling, circulating IL-6, markers of adipose tissue inflammation, and expression/content of IL-6 receptor and glycoprotein 130 (gp130). In untrained mice, IL-6 mRNA increased immediately after exercise, and increases in indices of IL-6 signaling were increased 4 h after exercise in epididymal, but not inguinal adipose tissue. This occurred independent of increases in plasma IL-6 and alterations in markers of inflammation. When compared with untrained mice, in trained mice, acute exercise induced the expression of gp130 and IL-6 receptor alpha (IL-6Rα), and training increased the protein content of these. Acute exercise induced the expression, and training increased the protein content, of glycoprotein 130 and IL-6Rα and was associated with a more rapid increase in markers of IL-6 signaling in epididymal adipose tissue from trained compared with untrained mice. The ability of exogenous IL-6 to increase phosphorylation of STAT3 was similar between groups. Our findings demonstrate that acute exercise increases IL-6 signaling in a depot-dependent manner, likely through an autocrine/paracrine mechanism. This response is initiated more rapidly after exercise in trained mice, potentially as a result of increases in IL-6Rα and gp130.


Asunto(s)
Tejido Adiposo/fisiopatología , Inflamación/fisiopatología , Interleucina-6 , Condicionamiento Físico Animal , Esfuerzo Físico , Transducción de Señal , Tejido Adiposo/metabolismo , Animales , Receptor gp130 de Citocinas/metabolismo , Epidídimo/metabolismo , Ácidos Grasos no Esterificados/sangre , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Receptores de Interleucina-6 , Factor de Transcripción STAT3/metabolismo , Conducta Sedentaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA