Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Curr Microbiol ; 81(7): 212, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839619

RESUMEN

Strain ZW T0_25T was isolated from an onion sample (Allium cepa var. Hytech F1) within a storage trial and proofed to be a novel, aerobic, Gram-stain negative, rod-shaped bacterial strain. Analyses of the 16S rRNA gene sequence and of the whole draft genome sequences, i.e., digital DNA-DNA hybridization (dDDH), Average Nucleotide Identity (ANI) and Average Amino Acid Identity (AAI) showed that this strain represents a new species of the genus Bosea. The genome size of strain ZW T0_25T is 6.19 Mbp, and the GC content is 66.9%. As whole cell sugars, rhamnose, ribose and glucose were identified. Ubiquinone Q-10 is the major respiratory quinone with 97.8%. Polar lipids in strain ZW T0_25T are composed of one phosphatidylethanolamine, one phosphatidylglycerol, one aminophospholipid, two aminolipids, one glycolipid and two phospholipids whereas the fatty acid profile predominantly consists of C18:1 w7c (63.3%), C16:1 w7c (19.5%) and C16:0 (7.1%). Phenotypic traits were tested in the wet lab as well as predicted in silico from genome data. Therefore, according to this polyphasic approach, the new name Bosea rubneri sp. nov. with the type strain ZW T0_25T (= DSM 116094 T = LMG 33093 T) is proposed.


Asunto(s)
Composición de Base , ADN Bacteriano , Ácidos Grasos , Cebollas , Filogenia , ARN Ribosómico 16S , Cebollas/microbiología , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/metabolismo , Ácidos Grasos/análisis , Ácidos Grasos/química , Genoma Bacteriano , Fosfolípidos/análisis , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Hibridación de Ácido Nucleico
2.
Artículo en Inglés | MEDLINE | ID: mdl-37040159

RESUMEN

The novel, aerobic, Gram-stain-positive, rod-shaped bacterial strain, ZW T2_19T, was isolated from an onion sample (Allium cepa var. Rijnsburger). Analyses of the 16S rRNA gene sequence revealed that ZW T2_19T represented a member of the genus Rathayibacter but may represent a novel species of this genus. Analyses of the whole draft genome sequences, i.e. digital DNA-DNA hybridisation (dDDH) and average nucleotide identity (ANI) of ZW T2_19T and all type strains of species of the genus Rathayibacter confirmed that ZW T2_19T represents a novel species of the genus Rathayibacter. The genome size of ZW T2_19T is 4.01 Mbp and the DNA G+C content is 71.8 mol%. Glucose, mannose, rhamnose and ribose were detected as whole-cell sugars of ZW T2_19T. The major respiratory quinone of ZW T2_19T is menaquinone MK-10, at 78.9 %. The detected peptidoglycan type in ZW T2_19T is a variant of type B2γ with {Gly} [l-diaminobutyric acid (l-DAB)/l-homoserine (l-Hse)] d-Glu-l-DAB. Polar lipids in ZW T2_19T consisted of one diphosphatidylglycerol, one phosphatidylglycerol, seven glycolipids, one phospholipid and one lipid. The fatty acid profile of ZW T2_19T predominantly consisted of anteiso-C15 : 0 (53 %), iso-C16 : 0 (21 %) and anteiso-C17 : 0 (18 %). In addition, API 20NE, API 50CH, API Coryne, API ZYM, antibiotic susceptibility, haemolysis and growth at different temperatures and with different supplements was investigated. On the basis of the results obtained using this polyphasic approach, including molecular, phenotypic and biochemical analyses, we propose the novel species Rathayibacter rubneri with the type and only strain ZW T2_19T (= DSM 114294T = LMG 32700T).


Asunto(s)
Actinomycetales , Ácidos Grasos , Ácidos Grasos/química , Cebollas , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Filogenia , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN
3.
Artículo en Inglés | MEDLINE | ID: mdl-34029178

RESUMEN

The strain Adlercreutzia caecicola DSM 22242T (=CCUG 57646T=NR06T) was taxonomically described in 2013 and named as Parvibacter caecicola Clavel et al. 2013. In 2018, the name of the strain DSM 22242T was changed to Adlercreutzia caecicola (Clavel et al. 2013) Nouioui et al. 2018 due to taxonomic investigations of the closely related genera Adlercreutzia, Asaccharobacter and Enterorhabdus within the phylum Actinobacteria. However, the first whole draft genome of strain DSM 22242T was published by our group in 2019. Therefore, the genome was not available within the study of Nouioui et al. (2018). The results of the polyphasic approach within this study, including phenotypic and biochemical analyses and genome-based taxonomic investigations [genome-wide average nucleotide identity (gANI), alignment fraction (AF), average amino acid identity (AAI), percentage of orthologous conserved proteins (POCP) and genome blast distance phylogeny (GBDP) tree], indicated that the proposed change of the name Parvibacter caecicola to Adlercreutzia caecicola was not correct. Therefore, it is proposed that the correct name of Adlercreutzia caecicola (Clavel et al. 2013) Nouioui et al. 2018 strain DSM 22242T is Parvibacter caecicola Clavel et al. 2013.


Asunto(s)
Actinobacteria/genética , Genoma Bacteriano , Secuencia de Aminoácidos , Secuencia de Bases , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-34495823

RESUMEN

The novel, anaerobic, Gram-positive, rod-shaped bacterial strain, ResAG-91T, was isolated from a faecal sample of a male human volunteer. Analysis of the 16S rRNA gene sequence revealed that strain ResAG-91T showed high similarity to the type strains of Adlercreutzia equolifaciens subsp. equolifaciens and Adlercreutzia equolifaciens subsp. celatus. Analysis of the whole draft genome sequences, i.e. digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI), of strain ResAG-91T and the type strains of Adlercreutzia species revealed that strain ResAG-91T represents a novel species of the genus Adlercreutzia. The genome size of strain ResAG-91T is 2.8 Mbp and the G+C content is 63.3 mol%. The major respiratory quinone of strain ResAG-91T was MMK-5 (methylmenaquinone). Major cellular fatty acids were C15 : 0 anteiso, C14 : 0 iso and C14 : 0 2-OH. Galactose and ribose were detected as major whole cell sugars. Furthermore, the peptidoglycan type of strain ResAG-91T was A1γ with meso-diaminopimelic acid. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, one unidentified lipid, three unidentified phospholipids and five unidentified glycolipids. Strain ResAG-91T was able to metabolize the stilbene resveratrol into dihydroresveratrol. On the basis of this polyphasic approach, including phenotypical, molecular (16S rRNA gene and whole genome sequencing) and biochemical (fatty acids, quinones, polar lipids, peptidoglycan, whole cell sugars, Rapid ID32A and API20A) analyses, we propose the novel species Adlercreutzia rubneri sp. nov. with the type and only strain ResAG-91T (=DSM 111416T=JCM 34176T=LMG 31897T).


Asunto(s)
Actinobacteria/clasificación , Heces/microbiología , Resveratrol , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , Humanos , Masculino , Hibridación de Ácido Nucleico , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
5.
Food Microbiol ; 92: 103552, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32950146

RESUMEN

The fermentation of vegetables is a traditional preservation method, that experiences a renaissance even in domestic households. Table salt is added to the fermentation batches to favor the growth of lactic acid bacteria usually. On an industrial scale, the fermentation brine is typically prepared with non-iodized table salt. In our study, we investigated the microbiota of cucumber fermentations using culture-dependent and -independent methods. We could show that the fermentation process of cucumbers and the involved microbiota is influenced by the concentration of table salt and not by the use of iodized table salt. Therefore, we conclude that the use of iodized table salt does not negatively affect the fermentation process. We could verify that iodine permeates the cucumbers by diffusion, leading to satisfactory iodine concentrations in the final food product. The industrial use of iodized table salt in food fermentations could contribute to maintain a constant iodine supply to the general public.


Asunto(s)
Cucumis sativus/microbiología , Alimentos Fermentados/microbiología , Yodo/farmacología , Microbiota/efectos de los fármacos , Cloruro de Sodio Dietético/farmacología , Cloruro de Sodio/farmacología , Cucumis sativus/química , Cucumis sativus/metabolismo , Fermentación , Alimentos Fermentados/análisis , Microbiología de Alimentos , Yodo/análisis , Sales (Química)/análisis , Sales (Química)/farmacología , Cloruro de Sodio/análisis , Cloruro de Sodio Dietético/análisis
6.
BMC Microbiol ; 19(1): 250, 2019 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-31706266

RESUMEN

BACKGROUND: This study aimed to evaluate the safety of raw vegetable products present on the German market regarding toxin-producing Bacillus cereus sensu lato (s.l.) group bacteria. RESULTS: A total of 147 B. cereus s.l. group strains isolated from cucumbers, carrots, herbs, salad leaves and ready-to-eat mixed salad leaves were analyzed. Their toxinogenic potential was assessed by multiplex PCR targeting the hemolysin BL (hbl) component D (hblD), non-hemolytic enterotoxin (nhe) component A (nheA), cytotoxin K-2 (cytK-2) and the cereulide (ces) toxin genes. In addition, a serological test was used to detect Hbl and Nhe toxins. On the basis of PCR and serological results, none of the strains were positive for the cereulide protein/genes, while 91.2, 83.0 and 37.4% were positive for the Hbl, Nhe and CytK toxins or their genes, respectively. Numerous strains produced multiple toxins. Generally, strains showed resistance against the ß-lactam antibiotics such as penicillin G and cefotaxim (100%), as well as amoxicillin/clavulanic acid combination and ampicillin (99.3%). Most strains were susceptible to ciprofloxacin (99.3%), chloramphenicol (98.6%), amikacin (98.0%), imipenem (93.9%), erythromycin (91.8%), gentamicin (88.4%), tetracycline (76.2%) and trimethoprim/sulfamethoxazole combination (52.4%). The genomes of eight selected strains were sequenced. The toxin gene profiles detected by PCR and serological test mostly agreed with those from whole-genome sequence data. CONCLUSIONS: Our study showed that B. cereus s.l. strains encoding toxin genes occur in products sold on the German market and that these may pose a health risk to the consumer if present at elevated levels. Furthermore, a small percentage of these strains harbor antibiotic resistance genes. The presence of these bacteria in fresh produce should, therefore, be monitored to guarantee their safety.


Asunto(s)
Antibacterianos/farmacología , Bacillus cereus/fisiología , Toxinas Bacterianas/genética , Farmacorresistencia Microbiana , Verduras/microbiología , Bacillus cereus/efectos de los fármacos , Bacillus cereus/aislamiento & purificación , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Alemania , Filogenia , Secuenciación Completa del Genoma
7.
Int J Syst Evol Microbiol ; 69(8): 2527-2532, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31210629

RESUMEN

In this study, the phylogenetic position of Gordonibacter faecihominis and Gordonibacter urolithinfaciens was investigated using phenotypic and molecular (rep-PCR, ARDRA, 16S rRNA gene sequencing and whole-genome sequencing) methods. Our results show that Gordonibacter faecihominis cannot be distinguished from Gordonibacter urolithinfaciens on the basis of the results of this polyphasic approach. Therefore, it is proposed that the two species Gordonibacter faecihominis and Gordonibacter urolithinfaciens belong to the same species.


Asunto(s)
Actinobacteria/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
8.
Foodborne Pathog Dis ; 16(4): 269-275, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30484714

RESUMEN

A total of 189 samples of fresh products (leafy salads, ready-to-eat mixed salads, and fresh herbs) bought in retail in Southwest Germany were investigated for their microbiological quality and the presence of pathogenic bacteria, including Salmonella spp., Listeria monocytogenes, and presumptive Bacillus cereus. Total aerobic mesophilic plate counts (TAC) ranged from 5.5 to 9.6 log colony-forming units (CFUs) per gram. Enterobacteria and pseudomonads were the predominant microorganisms and were detected in all samples with counts between 5.0 and 9.2 log CFU/g. Strains of Escherichia coli were detected in 9 salad (7.9%) and 25 herb samples (33.3%). Significant differences in bacterial counts were found between conventionally and organically-grown products: in herbs the counts of moulds were significantly higher in organically-grown products, while E. coli was only detected in conventionally-grown products. In conventionally-grown salad samples, yeast counts were significantly higher. Salmonella Enteritidis was only detected in two conventionally- and in one organically-produced salad samples (2.6%). No coagulase-positive staphylococci were detected in fresh salads as well as in herbs. High levels of B. cereus sensu lato (≥3 log CFU/g) were detected in 19 vegetable salads (16.7%) and even in 55 samples of fresh herbs (73.3%). Listeria monocytogenes could not be detected in fresh herbs; however, three L. monocytogenes strains were isolated from two conventionally-produced salad samples and belonged to PCR serogroup IIa. Although our results indicate a high microbial load in fresh salads and herbs in Southwest Germany in 2015, the incidences of human pathogenic bacteria, that is, L. monocytogenes, Salmonella spp., and coagulase-positive staphylococci strains, were low.


Asunto(s)
Contaminación de Alimentos , Microbiología de Alimentos , Verduras/microbiología , Bacillus cereus/efectos de los fármacos , Recuento de Colonia Microbiana , Comercio , Alemania , Humanos , Listeria monocytogenes/aislamiento & purificación , Ensaladas/microbiología , Salmonella/aislamiento & purificación
9.
Int J Syst Evol Microbiol ; 68(5): 1533-1540, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29537365

RESUMEN

Two novel, anaerobic, Gram-positive, rod-shaped bacterial strains, ResAG-85T and ResAG-96T, were isolated from a faecal sample of a male human. 16S rRNA gene sequences analyses indicated that these strains represent a distinct lineage within the family Eggerthellaceae. Strain ResAG-85T showed 92.3 % similarity to the type strains of the genera Eggerthella and Gordonibacter. Strain ResAG-96T clustered together with Paraeggerthella hongkongensis and the newly (but not validly) published genus 'Arabia massiliensis' (94.8 % similarity). Analysis of quinones revealed that MK-5 (21 % in ResAG-85T and 95 % in ResAG-96T) and MK-7 (53 % in strain ResAG-85T) were present, which were described for the first time for members of the Eggerthellaceae. Furthermore, MK-6 was present in both strains (25 % ResAG-85T and 5 % in ResAG-96T). The polar lipids detected in ResAG-85T and ResAG-96T consisted of eight and six glycolipids, respectively. Both strains possessed three phospholipids, one phosphatidylglycerol and one diphosphatidylglycerol. Analysis of fatty acids revealed that the percentage of total branched fatty acids was relatively high in comparison to related strains with 42 and 50 % of strains ResAG-85T and ResAG-96T but comparable to the value obtained for Gordonibacter pamelaeae DSM 19378T. On the basis of this polyphasic approach including molecular (16S rRNA gene sequencing) and biochemical methods (analysis of fatty acids, quinones, polar lipids, Rapid ID 32A and API 20A), the new genera and species Rubneribacter badeniensis with ResAG-85T (=DSM 105129T=JCM 32272T) and Enteroscipio rubneri with ResAG-96T (=DSM 105130T=JCM 32273T) as the type and only strains are described.


Asunto(s)
Actinobacteria/clasificación , Heces/microbiología , Filogenia , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Adulto , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , Glucolípidos/química , Humanos , Masculino , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
10.
Foodborne Pathog Dis ; 14(9): 502-509, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28594569

RESUMEN

Two hundred fresh produce samples (cucumber, carrots, herbs, leaf lettuce, and ready-to-eat mixed salad leaves) were obtained from retail in northern Germany in 2015. These were investigated for microbial contamination and the presence of foodborne pathogens, including Listeria monocytogenes, Salmonella serovars, presumptive Bacillus (B.) cereus, and Shiga toxin-producing Escherichia coli using culture-dependent (enrichment, plating on selective media) and -independent (real-time polymerase chain reaction [PCR]) techniques. Overall, our results showed that the fresh produce samples generally showed high mean aerobic mesophilic bacterial counts of between 7 and 8 log10 cfu/g. However, there was also a considerable variation in total aerobic bacterial counts between different product samples. Although real-time PCR signals for pathogenic E. coli were detected in 14.0% of total samples analyzed, only one (0.5%) Shiga toxin-producing E. coli isolate of serotype O26:H11 was recovered from mixed salad leaves and contained stx1, stx2, and eae genes. Two L. monocytogenes isolates (1% of total samples) were recovered from packaged mixed salad leaves and belonged to PCR serogroups IIb and IVb, respectively. One Salmonella isolate (0.5%) was recovered after selective enrichment also from mixed salad leaves and it was identified as Salmonella Szentes serotype 16:k:1,2. Overall the incidence of foodborne pathogens on the northern German retail market in 2015 was very low.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes/aislamiento & purificación , Salmonella/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Verduras/microbiología , Alemania , Humanos , Listeria monocytogenes/genética , Salmonella/genética , Escherichia coli Shiga-Toxigénica/genética
11.
Med Microbiol Immunol ; 204(4): 527-38, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25416927

RESUMEN

The effect of a daily intake of the probiotic strain Lactobacillus casei Shirota (LcS) on the colonisation of pathogens, specifically streptococci and Staphylococcus aureus, in the nose and throat of healthy human volunteers with low natural killer cell activity, was investigated in a randomised and controlled intervention study. The study consisted of a 2-week run-in phase, followed by a 4-week intervention phase. The probiotic treatment group received a fermented milk drink with LcS, while the placebo group received an equally composed milk drink without the probiotic additive. To isolate potential pathogenic streptococci and Staph. aureus, samples from the pharynx, as well as of both middle nasal meati, were taken, once after the run-in phase and once at the end of the intervention phase. Isolated bacteria were identified as either Staph. aureus and α- or ß-haemolytic streptococci in a polyphasic taxonomical approach based on phenotypic tests, amplified ribosomal DNA restriction analysis genotyping, and 16S rRNA gene sequencing of representative strains. Salivary secretory immunoglobulin A (SIgA) was used as marker of protective mucosal immunity to evaluate whether LcS treatment influenced SIgA production. No statistically significant effect could be determined for intervention with LcS on the incidence of Staph. aureus in the nasal space, Staph. aureus in the pharyngeal space or for ß-haemolytic streptococci and Streptococcus pneumoniae in the pharyngeal space. Thus, the intervention did not influence the nasopharyngeal colonisation with Gram-positive potential pathogens. Production of salivary SIgA as a potential means of microbiota modulation was also not affected.


Asunto(s)
Voluntarios Sanos , Células Asesinas Naturales/inmunología , Lacticaseibacillus casei/crecimiento & desarrollo , Nasofaringe/microbiología , Probióticos/administración & dosificación , Staphylococcus aureus/aislamiento & purificación , Streptococcus/aislamiento & purificación , Adolescente , Adulto , Técnicas Bacteriológicas , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Humanos , Inmunoglobulina A Secretora/análisis , Masculino , Persona de Mediana Edad , Placebos/administración & dosificación , ARN Ribosómico 16S/genética , Saliva/inmunología , Análisis de Secuencia de ADN , Resultado del Tratamiento , Adulto Joven
12.
Carbohydr Polym ; 334: 122007, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553199

RESUMEN

Pectins are dietary fibers that are attributed with several beneficial immunomodulatory effects. Depending on the degree of esterification (DE), pectins can be classified as high methoxyl pectin (HMP) or low methoxyl pectin (LMP). The aim of this study was to investigate the effects of pectin methyl-esterification on intestinal microbiota and its immunomodulatory properties in naive mice. Supplementation of the diet with LMP or HMP induced changes in the composition of the intestinal microbiota in mice toward Bacteroides, which was mainly promoted by HMP. Metabolome analysis of stool samples from pectin-fed mice showed a different effect of the two types of pectin on the levels of short-chain fatty acids and bile acids, which was consistent with highly efficient in vivo fermentation of LMP. Analysis of serum antibody levels showed a significant increase in IgG and IgA levels by both pectins, while FACS analysis revealed a decrease of infiltrating inflammatory cells in the intestinal lamina propria by HMP. Our study revealed that the structural properties of the investigated pectins determine fermentability, effects on microbial composition, metabolite production, and modulation of immune responses. Consumption of HMP preferentially altered the gut microbiota and suppressed pro-inflammatory immune responses, suggesting a beneficial role in inflammatory diseases.


Asunto(s)
Microbioma Gastrointestinal , Pectinas , Ratones , Animales , Pectinas/química , Esterificación , Fibras de la Dieta/farmacología , Fibras de la Dieta/metabolismo , Fermentación
13.
Plasmid ; 69(2): 160-71, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23220639

RESUMEN

Plasmid pMRI 5.2 from Lactobacillus plantarum BFE 5092 was sequenced and analysed. The sequence consists of 5206bp with a mol% G+C content of 35.8%. Nine putative open reading frames were identified. A typical pC194 family double strand origin (dso) and a putative single strand origin (sso) were predicted upstream of a rep gene. This rep gene encoded a replication protein of 314 amino acids exhibiting 98% amino acid sequence identity to the Rep protein of plasmid pLAB1000 from Lactobacillus hilgardii. A mob gene encoding a mobilization protein was also identified and this protein showed high amino acid similarity to Mob proteins from various L. plantarum plasmids. Downstream of the mob gene, a second putative replication region was identified that is similar to the pMV158 family of plasmids. It contains a dso as well as a putative sso, and encodes the 52 amino acid repressor-like protein RepA, the replication initiation protein RepB of 215 amino acids, and the 48 amino acid RepC that is similar to ORFD of the lactococcal plasmid pWVO1. RT-PCR and qRT-PCR expression analyses of the rep and repB genes showed that the repB gene was expressed at a higher level. To confirm that the plasmid replicated by the rolling-circle-type mechanism, the presence of a characteristic single strand intermediate DNA was shown to be produced during replication. Plasmid copy number was ca. 30 per equivalent chromosome copy number based on qRT-PCR analyses. The plasmid also encodes four additional putative proteins of unknown function. The unusual feature of a rolling-circle plasmid having two different plasmid-encoded replication initiation proteins from different replicon families suggests that the genes for these may have originated from different plasmids.


Asunto(s)
ADN Circular/genética , Genes Bacterianos/genética , Lactobacillus plantarum/genética , Plásmidos/genética , Origen de Réplica/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN de Cadena Simple , Electroforesis en Gel de Agar , Dosificación de Gen/genética , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
14.
Int J Syst Evol Microbiol ; 63(Pt 11): 4026-4032, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23749274

RESUMEN

The novel, Gram-stain-positive, ovoid, lactic acid bacterial isolates LMG 27205, LMG 27206, LMG 27207(T) and MRI-F 18 were obtained from throat samples of healthy humans. 16S rRNA gene sequence analyses indicated that these isolates belong to the genus Streptococcus, specifically the Streptococcus mitis group, with Streptococcus australis and Streptococcus mitis as the nearest neighbours (99.45 and 98.56 % 16S rRNA gene sequence similarity to the respective type strains). Genotypic fingerprinting by fluorescent amplified fragment length polymorphism (FAFLP) and pulsed-field gel electrophoresis (PFGE), DNA-DNA hybridizations, comparative sequence analysis of pheS, rpoA and atpA and physiological and biochemical tests revealed that these bacteria formed a taxon well separated from its nearest neighbours and other species of the genus Streptococcus with validly published names and, therefore, represent a novel species, for which the name Streptococcus rubneri sp. nov. is proposed, with LMG 27207(T) ( = DSM 26920(T)) as the type strain.


Asunto(s)
Faringe/microbiología , Filogenia , Streptococcus/clasificación , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Composición de Base , Dermatoglifia del ADN , ADN Bacteriano/genética , Electroforesis en Gel de Campo Pulsado , Genes Bacterianos , Humanos , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptococcus/genética , Streptococcus/aislamiento & purificación
15.
Carbohydr Polym ; 308: 120642, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36813335

RESUMEN

Many of the proposed health-related properties of pectins are based on their fermentability in the large intestine, but detailed structure-related studies on pectin fermentation have not been reported so far. Here, pectin fermentation kinetics were studied with a focus on structurally different pectic polymers. Therefore, six commercial pectins from citrus, apple, and sugar beet were chemically characterized and fermented in in vitro fermentation assays with human fecal samples over different periods of time (0 h, 4 h, 24 h, 48 h). Structure elucidation of intermediate cleavage products showed differences in fermentation speed and/or fermentation rate among the pectins, but the order in which specific structural pectic elements were fermented was comparable across all pectins. Neutral side chains of rhamnogalacturonan type I were fermented first (between 0 and 4 h), followed by homogalacturonan units (between 0 and 24 h) and, at last, the rhamnogalacturonan type I backbone (between 4 and 48 h). This indicates that fermentation of different pectic structural units might take place in different sections of the colon, potentially affecting their nutritional properties. For the formation of different short-chain fatty acids, mainly acetate, propionate, and butyrate, and the influence on microbiota, there was no time-dependent correlation regarding the pectic subunits. However, an increase of members of the bacterial genera Faecalibacterium, Lachnoclostridium, and Lachnospira was observed for all pectins.


Asunto(s)
Pectinas , Ramnogalacturonanos , Humanos , Fermentación , Pectinas/química , Heces/microbiología , Bacterias/metabolismo
16.
Toxicol Lett ; 358: 1-5, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34933076

RESUMEN

Glyphosate is the most frequently used herbicide worldwide and its application is under discussion due to health concerns. As humans may be exposed to glyphosate, the present study investigated the metabolism of glyphosate by the human fecal microbiota in vitro. Human fecal samples were collected from 15 different volunteers and fecal suspensions were prepared. The human fecal suspension samples were incubated with glyphosate under strictly anaerobic conditions and glyphosate degradation was investigated. Neither a degradation of glyphosate, nor a formation of AMPA (aminomethylphosphonic acid), the known microbial metabolite in soil, was detected. In conclusion, the microbiota of human fecal suspensions did not metabolize glyphosate under the conditions used in our study which hints at the assumption that transformation of glyphosate by the gut microbiota seems to be negligible in humans.


Asunto(s)
Herbicidas , Microbiota , Glicina/análogos & derivados , Herbicidas/toxicidad , Humanos , Isoxazoles , Suspensiones , Tetrazoles , Glifosato
17.
J Bacteriol ; 193(20): 5868, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21952542

RESUMEN

Weissella thailandensis fsh4-2 is a heterofermentative lactic acid bacterium isolated from the Korean fermented seafood condiment jeotkal. Here we report the draft genome sequence of W. thailandensis fsh4-2 (1,651 genes, 1,436 encoding known proteins, 183 encoding unknown proteins, 32 RNA genes), which consists of 50 large contigs of >100 bp.


Asunto(s)
Productos Pesqueros/microbiología , Genoma Bacteriano , Weissella/genética , Secuencia de Bases , Datos de Secuencia Molecular , Weissella/aislamiento & purificación
18.
Foods ; 10(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34829025

RESUMEN

The intake of isoflavones is presumed to be associated with health benefits in humans, but also potential adverse effects of isoflavones are controversially discussed. Isoflavones can be metabolized by gut bacteria leading to modulation of the bioactivity, such as estrogenic effects. Especially bacterial strains of the Eggerthellaceae, a well-known bacterial family of the human gut microbiota, are able to convert the isoflavone daidzein into equol. In addition, metabolization of genistein is also described for strains of the Eggerthellaceae. The aim of this study was to identify and investigate gut bacterial strains of the family Eggerthellaceae as well as the narrowly related family Coriobacteriaceae which are able to metabolize daidzein and genistein. This study provides a comprehensive, polyphasic approach comprising in silico analysis of the equol gene cluster, detection of genes associated with the daidzein, and genistein metabolism via PCR and fermentation of these isoflavones. The in silico search for protein sequences that are associated with daidzein metabolism identified sequences with high similarity values in already well-known equol-producing strains. Furthermore, protein sequences that are presumed to be associated with daidzein and genistein metabolism were detected in the two type strains 'Hugonella massiliensis' and Senegalimassilia faecalis which were not yet described to metabolize these isoflavones. An alignment of these protein sequences showed that the equol gene cluster is highly conserved. In addition, PCR amplification supported the presence of genes associated with daidzein and genistein metabolism. Furthermore, the metabolism of daidzein and genistein was investigated in fermentations of pure bacterial cultures under strictly anaerobic conditions and proofed the metabolism of daidzein and genistein by the strains 'Hugonella massiliensis' DSM 101782T and Senegalimassilia faecalis KGMB04484T.

19.
Int J Food Microbiol ; 342: 109056, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33540190

RESUMEN

The interest in the consumption of African indigenous leafy vegetables increased in African countries, e.g. Kenya, within the last years. One example of African indigenous leafy vegetables is African nightshade (Solanum scabrum) which is nutritious, rich in proteins and micronutrients and therefore could contribute to a healthy diet. African nightshade has several agricultural advantages. However, the most important disadvantage is the fast perishability which leads to enormous post-harvest losses. In this study, we investigated the fermentation of African nightshade as a post-harvest processing method to reduce post-harvest losses. The two lactic acid bacterial starter strains Lactiplantibacillus plantarum BFE 5092 and Limosilactobacillus fermentum BFE 6620 were used to inoculate fermentations of African nightshade leaves with initial counts of 106-107 cfu/ml. Uninoculated controls were conducted for each fermentation trial. Fermentations were performed both in Kenya and in Germany. The success of the inoculated starter cultures was proven by the measurement of pH values and determination of lactic acid concentration. Lactobacilli strains dominated the microbiota of the starter inoculated samples in contrast to the non-inoculated controls. This was supported by classical culture-dependent plating on different microbiological media as well as by the culture-independent molecular biological methods denaturing gradient gel electrophoresis and 16S rRNA gene high-throughput amplicon sequencing. We could demonstrate that the use of the selected starter cultures for fermentation of African nightshade leaves led to controlled and reliable fermentations with quick acidification. Thus, controlled fermentation with appropriate starter cultures is a promising method for post-harvest treatment of African nightshade leaves.


Asunto(s)
Alimentos Fermentados/microbiología , Lactobacillales/metabolismo , Solanum , Verduras/microbiología , África , Fermentación , Microbiología de Alimentos , Ácido Láctico/análisis , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Microbiota , Hojas de la Planta/microbiología , ARN Ribosómico 16S/genética
20.
J Food Prot ; 73(5): 870-8, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20501038

RESUMEN

The diversity of Bacillus species isolated from the fermented soup condiment okpehe in Nigeria was studied using a combination of phenotypic and genotypic methods. Fifty strains presumptively characterized as Bacillus spp. using the API 50 CHB test were further identified by PCR of randomly amplified polymorphic DNA (RAPD) and by amplified ribosomal DNA restriction analysis (ARDRA) genotyping methods. ARDRA fingerprinting with HhaI, HinfI, and Sau3AI restriction enzymes did not allow successful differentiation between the Bacillus species, except for distinguishing B. cereus from other Bacillus species. This problem was overcome with the combination of RAPD PCR and ARDRA genotypic fingerprinting techniques. Sequencing of 16S rRNA genes of selected strains representative of the major clusters revealed that the Bacillus strains associated with this fermentation were B. subtilis, B. amyloliquefaciens, B. cereus, and B. licheniformis (in decreasing order of incidence). The presence of enterotoxin genes in all B. cereus strains was demonstrated by multiplex PCR. The high incidence of detection (20%) of possibly pathogenic B. cereus strains that contained enterotoxin genes indicated that these fermented foods may constitute a potential health risk.


Asunto(s)
Bacillus/genética , Condimentos/microbiología , ADN Bacteriano/análisis , Microbiología de Alimentos , Bacillus/clasificación , Cromosomas Bacterianos/genética , Dermatoglifia del ADN , Fermentación , Genes Bacterianos/genética , Variación Genética , Genotipo , Datos de Secuencia Molecular , Nigeria , Fenotipo , Filogenia , ARN Ribosómico 16S/análisis , Técnica del ADN Polimorfo Amplificado Aleatorio , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA