Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Mater ; 22(12): 1492-1498, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783942

RESUMEN

Material surfaces encompass structural and chemical discontinuities that often lead to the loss of the property of interest in so-called dead layers. It is particularly problematic in nanoscale oxide electronics, where the integration of strongly correlated materials into devices is obstructed by the thickness threshold required for the emergence of their functionality. Here we report the stabilization of ultrathin out-of-plane ferroelectricity in oxide heterostructures through the design of an artificial flux-closure architecture. Inserting an in-plane-polarized ferroelectric epitaxial buffer provides the continuity of polarization at the interface; despite its insulating nature, we observe the emergence of polarization in our out-of-plane-polarized model of ferroelectric BaTiO3 from the very first unit cell. In BiFeO3, the flux-closure approach stabilizes a 251° domain wall. Its unusual chirality is probably associated with the ferroelectric analogue to the Dzyaloshinskii-Moriya interaction. We, thus, see that in an adaptively engineered geometry, the depolarizing-field-screening properties of an insulator can even surpass those of a metal and be a source of functionality. This could be a useful insight on the road towards the next generation of oxide electronics.

2.
J Am Chem Soc ; 145(31): 17042-17055, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524069

RESUMEN

New synthetic hybrid materials and their increasing complexity have placed growing demands on crystal growth for single-crystal X-ray diffraction analysis. Unfortunately, not all chemical systems are conducive to the isolation of single crystals for traditional characterization. Here, small-molecule serial femtosecond crystallography (smSFX) at atomic resolution (0.833 Å) is employed to characterize microcrystalline silver n-alkanethiolates with various alkyl chain lengths at X-ray free electron laser facilities, resolving long-standing controversies regarding the atomic connectivity and odd-even effects of layer stacking. smSFX provides high-quality crystal structures directly from the powder of the true unknowns, a capability that is particularly useful for systems having notoriously small or defective crystals. We present crystal structures of silver n-butanethiolate (C4), silver n-hexanethiolate (C6), and silver n-nonanethiolate (C9). We show that an odd-even effect originates from the orientation of the terminal methyl group and its role in packing efficiency. We also propose a secondary odd-even effect involving multiple mosaic blocks in the crystals containing even-numbered chains, identified by selected-area electron diffraction measurements. We conclude with a discussion of the merits of the synthetic preparation for the preparation of microdiffraction specimens and compare the long-range order in these crystals to that of self-assembled monolayers.

3.
Anal Chem ; 94(24): 8605-8617, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35678711

RESUMEN

Neurochemical corelease has received much attention in understanding brain activity and cognition. Despite many attempts, the multiplexed monitoring of coreleased neurochemicals with spatiotemporal precision and minimal crosstalk using existing methods remains challenging. Here, we report a soft neural probe for multiplexed neurochemical monitoring via the electrografting-assisted site-selective functionalization of aptamers on graphene field-effect transistors (G-FETs). The neural probes possess excellent flexibility, ultralight mass (28 mg), and a nearly cellular-scale dimension of 50 µm × 50 µm for each G-FET. As a demonstration, we show that G-FETs with electrochemically grafted molecular linkers (-COOH or -NH2) and specific aptamers can be used to monitor serotonin and dopamine with high sensitivity (limit of detection: 10 pM) and selectivity (dopamine sensor >22-fold over norepinephrine; serotonin sensor >17-fold over dopamine). In addition, we demonstrate the feasibility of the simultaneous monitoring of dopamine and serotonin in a single neural probe with minimal crosstalk and interferences in phosphate-buffered saline, artificial cerebrospinal fluid, and harvested mouse brain tissues. The stability studies show that multiplexed neural probes maintain the capability for simultaneously monitoring dopamine and serotonin with minimal crosstalk after incubating in rat cerebrospinal fluid for 96 h, although a reduced sensor response at high concentrations is observed. Ex vivo studies in harvested mice brains suggest potential applications in monitoring the evoked release of dopamine and serotonin. The developed multiplexed detection methodology can also be adapted for monitoring other neurochemicals, such as metabolites and neuropeptides, by simply replacing the aptamers functionalized on the G-FETs.


Asunto(s)
Dopamina , Grafito , Animales , Encéfalo/metabolismo , Dopamina/metabolismo , Grafito/química , Ratones , Norepinefrina , Oligonucleótidos/metabolismo , Ratas , Serotonina/metabolismo
4.
Soft Matter ; 18(36): 6857-6867, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36043504

RESUMEN

Functional structures with reversible shape-morphing and color-changing capabilities are promising for applications including soft robotics and biomimetic camouflage devices. Despite extensive studies, there are few reports on achieving both reversible shape-switching and color-changing capabilities within one structure. Here, we report a facile and versatile strategy to realize such capabilities via spatially programmed liquid crystal elastomer (LCE) structures incorporated with thermochromic dyes. By coupling the shape-changing behavior of LCEs resulting from the nematic-to-isotropic transition of liquid crystals with the color-changing thermochromic dyes, 3D thermochromic LCE structures change their shapes and colors simultaneously, which are controlled by the nematic-isotropic transition temperature of LCEs and the critical color-changing temperature of dyes, respectively. Demonstrations, including the simulated blooming process of a resembled flower, the camouflage behavior of a "butterfly"/"chameleon" robot in response to environmental changes, and the underwater camouflage of an "octopus" robot, highlight the reliability of this strategy. Furthermore, integrating micro-ferromagnetic particles into the "octopus" thermochromic LCE robot allows it to respond to thermal-magnetic dual stimuli for "adaptive" motion and diverse biomimetic motion modes, including swimming, rolling, rotating, and crawling, accompanied by color-changing behaviors for camouflage. The reversibly reconfigurable and color-changing thermochromic LCE structures are promising for applications including soft camouflage robots and multifunctional biomimetic devices.


Asunto(s)
Cristales Líquidos , Robótica , Colorantes/química , Elastómeros/química , Cristales Líquidos/química , Reproducibilidad de los Resultados
5.
Proc Natl Acad Sci U S A ; 116(7): 2413-2418, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30683718

RESUMEN

Nanometer-scale 3D imaging of materials properties is critical for understanding equilibrium states in electronic materials, as well as for optimization of device performance and reliability, even though such capabilities remain a substantial experimental challenge. Tomographic atomic force microscopy (TAFM) is presented as a subtractive scanning probe technique for high-resolution, 3D ferroelectric property measurements. Volumetric property resolution below 315 nm3, as well as unit-cell-scale vertical material removal, are demonstrated. Specifically, TAFM is applied to investigate the size dependence of ferroelectricity in the room-temperature multiferroic BiFeO3 across two decades of thickness to below 1 nm. TAFM enables volumetric imaging of ferroelectric domains in BiFeO3 with a significant improvement in spatial resolution compared with existing domain tomography techniques. We additionally employ TAFM for direct, thickness-dependent measurements of the local spontaneous polarization and ferroelectric coercive field in BiFeO3 The thickness-resolved ferroelectric properties strongly correlate with cross-sectional transmission electron microscopy (TEM), Landau-Ginzburg-Devonshire phenomenological theory, and the semiempirical Kay-Dunn scaling law for ferroelectric coercive fields. These results provide an unambiguous determination of a stable and switchable polar state in BiFeO3 to thicknesses below 5 nm. The accuracy and utility of these findings on finite size effects in ferroelectric and multiferroic materials more broadly exemplifies the potential for novel insight into nanoscale 3D property measurements via other variations of TAFM.

6.
Nanotechnology ; 33(5)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644685

RESUMEN

Domain switching pathways in ferroelectric materials visualized by dynamic piezoresponse force microscopy (PFM) are explored via variational autoencoder, which simplifies the elements of the observed domain structure, crucially allowing for rotational invariance, thereby reducing the variability of local polarization distributions to a small number of latent variables. For small sampling window sizes the latent space is degenerate, and variability is observed only in the direction of a single latent variable that can be identified with the presence of domain wall. For larger window sizes, the latent space is 2D, and the disentangled latent variables can be generally interpreted as the degree of switching and complexity of domain structure. Applied to multiple consecutive PFM images acquired while monitoring domain switching, the polarization switching mechanism can thus be visualized in the latent space, providing insight into domain evolution mechanisms and their correlation with the microstructure.

7.
Powder Technol ; 360: 1271-1277, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32231400

RESUMEN

The environmental conditions associated with changing the hydration state of active pharmaceutical ingredients (API) are crucial to understanding their stability, bioperformance, and manufacturability. Identifying the dehydration event using < 1µg of material is an increasingly important challenge. Atomic Force Microscopy indentation mapping is implemented at controlled temperatures between 25-100°C, for nanoscale volumes of hydrated APIs exhibiting distinct dehydration behavior and anhydrous APIs as controls. For caffeine hydrate and azithromycin dihydrate, the relative mechanical modulus increases ~10-fold at dehydration temperatures. These are confirmed by conventional macroscopic measurements including Variable Temperature Powder X-ray Diffraction, Thermogravimetric Analysis, and Differential Scanning Calorimetry. Conversely, no such mechanical transition is observed for anhydrous ibuprofen or a proprietary anhydrous compound. AFM-based mechanical mapping is therefore demonstrated for small-volume determination of temperature-induced solid-state dehydration events, which may enable spatially or temporally mapping for future studies of dehydration mechanisms and kinetics, as a function of commercially relevant nanoscale heterogeneities.

8.
J Nanosci Nanotechnol ; 18(3): 1557-1567, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448630

RESUMEN

The nanomechanical properties of various biological and cellular surfaces are increasingly investigated with Scanning Probe Microscopy. Surface stiffness measurements are currently being used to define metastatic properties of various cancerous cell lines and other related biological tissues. Here we present a unique methodology to understand depth dependent nanomechanical variations in stiffness in biopolymers and live cells. In this study we have used A2780 and NIH3T3 cell lines and 0.5% and 1% Agarose to investigate depth dependent stiffness and porosity on nanomechanical properties in different biological systems. This analytical methodology can circumvent the issue associated with the contribution of substrates on cell stiffness. Here we demonstrate that by calculating 'continuous-step-wise-modulus' on force versus distance curves one can observe minute variation as function of depth. Due to the presence of different kinds of cytoskeletal filament, dissipation of contact force might vary from one portion of a cell to another. On NIH3T3 cell lines, stiffness profile of Circular Dorsal Ruffles could be observed in form of large parabolic feature with changes in stiffness at different depth. In biopolymers like agarose, depending upon the extent of polymerization in there can be increase or decrease in stiffness due variations in pore size and extent to which crosslinking is taking place at different depths. 0.5% agarose showed gradual decrease in stiffness whereas with 1% agarose there was slight increase in stiffness as one indents deeper into its surface.


Asunto(s)
Hidrogeles , Animales , Fenómenos Biomecánicos , Células , Fenómenos Mecánicos , Ratones , Microscopía de Fuerza Atómica , Células 3T3 NIH , Sefarosa
9.
Nanotechnology ; 28(18): 185705, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28397709

RESUMEN

Ion beam milling is the most common modern method for preparing specific features for microscopic analysis, even though concomitant ion implantation and amorphization remain persistent challenges, particularly as they often modify materials properties of interest. Atomic force microscopy (AFM), on the other hand, can mechanically mill specific nanoscale regions in plan-view without chemical or high energy ion damage, due to its resolution, directionality, and fine load control. As an example, AFM-nanomilling (AFM-NM) is implemented for top-down planarization of polycrystalline CdTe thin film solar cells, with a resulting decrease in the root mean square (RMS) roughness by an order of magnitude, even better than for a low incidence FIB polished surface. Subsequent AFM-based property maps reveal a substantially stronger contrast, in this case of the short-circuit current or open circuit voltage during light exposure. Electron back scattering diffraction (EBSD) imaging also becomes possible upon AFM-NM, enabling direct correlations between the local materials properties and the polycrystalline microstructure. Smooth shallow-angle cross-sections are demonstrated as well, based on targeted oblique milling. As expected, this reveals a gradual decrease in the average short-circuit current and maximum power as the underlying CdS and electrode layers are approached, but a relatively consistent open-circuit voltage through the diminishing thickness of the CdTe absorber. AFM-based nanomilling is therefore a powerful tool for material characterization, uniquely providing ion-damage free, selective area, planar smoothing or low-angle sectioning of specimens while preserving their functionality. This enables novel, co-located advanced AFM measurements, EBSD analysis, and investigations by related techniques that are otherwise hindered by surface morphology or surface damage.

10.
Nano Lett ; 16(6): 3434-41, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27116651

RESUMEN

Perovskite solar cells (PSCs) based on thin films of organolead trihalide perovskites (OTPs) hold unprecedented promise for low-cost, high-efficiency photovoltaics (PVs) of the future. While PV performance parameters of PSCs, such as short circuit current, open circuit voltage, and maximum power, are always measured at the macroscopic scale, it is necessary to probe such photoresponses at the nanoscale to gain key insights into the fundamental PV mechanisms and their localized dependence on the OTP thin-film microstructure. Here we use photoconductive atomic force microscopy spectroscopy to map for the first time variations of PV performance at the nanoscale for planar PSCs based on hole-transport-layer free methylammonium lead triiodide (CH3NH3PbI3 or MAPbI3) thin films. These results reveal substantial variations in the photoresponse that correlate with thin-film microstructural features such as intragrain planar defects, grains, grain boundaries, and notably also grain-aggregates. The insights gained into such microstructure-localized PV mechanisms are essential for guiding microstructural tailoring of OTP films for improved PV performance in future PSCs.

11.
Nanotechnology ; 25(15): 155704, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24651310

RESUMEN

Atomic force microscopy (AFM) has become an indispensable tool for imaging the topography and properties of surfaces at the nanoscale. A ubiquitous problem, however, is that optimal accuracy demands smooth surfaces, slow scanning, and expert users, contrary to many AFM applications and practical use patterns. Accordingly, a simple correction to AFM topographic images is implemented, incorporating error signals such as deflection and/or amplitude data that have long been available but quantitatively underexploited. This is demonstrated to substantially improve both height and lateral accuracy for expert users, with a corresponding 3-5 fold decrease in image error. Common image artifacts due to inexperienced AFM use, generally poorly scanned surfaces, or high speed images acquired in as fast as 7 s, are also shown to be effectively rectified, returning results equivalent to standard 'expert-user' images. This concept is proven for contact mode AFM, AC-mode, and high speed imaging, as well as property mapping such as phase contrast, with obvious extensions to many specialized AFM variations as well. Conveniently, as this correction procedure is based on either real time or post-processing, it is easily employed for future as well as legacy AFM systems and data. Such error-corrected AFM therefore offers a simple, broadly applicable approach for more accurate, more efficient, and more user-friendly implementation of AFM for nanoscale topography and property mapping.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Propiedades de Superficie
12.
Nanoscale ; 16(35): 16535-16542, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39145438

RESUMEN

Controlled wrinkle formation has attracted intensive research interest as a means to modify surface properties. However, most of the currently explored methods rely on mechanically stretching polymer substrates with hard surface coatings, and the application of these methods to different materials is limited. Here, for the first time, we demonstrate laser-assisted periodic wrinkle formation on silicon nitride (SiN) membranes that are coated with titanium (Ti)/nickel (Ni) multilayers. Corrugated surface formation mechanism, as well as grain nucleation and growth, are studied using ultrafast transmission electron microscopy (UTEM). Periodic wrinkling and patterning of multilayers on thin SiN membranes are induced by a nanosecond pulsed laser, and the deformation of the film is captured by single-shot imaging. The investigated structures revealed periodic wrinkling of the membrane and corrugated surface formation on both sides of the film. The findings of this work could allow laser-irradiation-based fast fabrication of corrugated films with tailored properties.

13.
Nanotechnology ; 24(12): 125706, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23466784

RESUMEN

The dynamics and reversibility of Ag nanoparticle photodissolution into As2S3 chalcogenide thin films have uniquely been directly measured by continuous AFM imaging during patterned optical illumination. The surface morphology, roughness and particle size distribution have thus been spatially and statistically monitored as a function of time, both during and following optical exposure. Photodissolution was observed to proceed via two mechanisms. In one case, nanoparticles abruptly and nearly completely disappeared along a sharp dissolution front traveling laterally at ∼0.19 µm s(-1). Following illumination, similarly sized nanoparticles uniformly reformed on the surface. A more inhomogeneous photodissolution process was separately recorded, clearing irregular ∼1-2 µm patches that grew with time until most of the surface was free of nanoparticles. Post-illumination, surface nanoparticle development and coverage were similarly inhomogeneous, with larger but 50% fewer particles in the final distribution. In every experiment, an initial roughening was detected before the nanoparticle surface coverage visually diminished, indicating the onset of photodissolution at widely distributed energetically and kinetically favored sites which temporarily enhances nanoscale roughness. Such direct studies of surface dynamics are crucial to understanding and ultimately optimizing chalcogenide film applications such as photomasks, optoelectronics media and bio-chemical sensors.

14.
Nanotechnology ; 23(48): 485309, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23138446

RESUMEN

We studied peculiarities of the structural reconstruction within holographically recorded gratings on the surface of several different amorphous azobenzene-containing polymers. Under illumination with a light interference pattern, two processes take place in this type of polymer. The first process is the light-induced orientation of azobenzene units perpendicular to the polarization plane of the incident light. The second one is a transfer of macromolecules along the grating vector (i.e. perpendicular to the grating lines). These two processes result in the creation of a volume orientation grating (alternating regions of different direction or degree of molecular orientation) and a surface relief grating (SRG)-i.e. modulation of film thickness. One can assume that both orientation of molecules and their movement might change the local mechanical properties of the material. Therefore, formation of the SRG is expected to result also in modulation of the local stiffness of the polymer film. To reveal and investigate these stiffness changes within the grating, spin-coated polymer films were prepared and the gratings were recorded on them in two different ways: with an orthogonal circular or orthogonal linear polarization of two recording light beams. A combination of atomic force microscopy (AFM) and ultrasonic force microscopy (UFM) techniques was applied for SRG development monitoring. We demonstrate that formation of the phase gratings depends on the chemical structure of polymers being used, polymer film thickness, and recording parameters, with the height of grating structures (depth of modulation) increasing with both the exposure time and the film thickness. UFM images suggest that the slopes of the topographic peaks in the phase gratings exhibit an increased stiffness with respect to the grating depressions.

15.
Adv Mater ; 34(36): e2202614, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35820118

RESUMEN

Ferroelectric domain walls are quasi-2D systems that show great promise for the development of nonvolatile memory, memristor technology, and electronic components with ultrasmall feature size. Electric fields, for example, can change the domain wall orientation relative to the spontaneous polarization and switch between resistive and conductive states, controlling the electrical current. Being embedded in a 3D material, however, the domain walls are not perfectly flat and can form networks, which leads to complex physical structures. In this work, the importance of the nanoscale structure for the emergent transport properties is demonstrated, studying electronic conduction in the 3D network of neutral and charged domain walls in ErMnO3 . By combining tomographic microscopy techniques and finite element modeling, the contribution of domain walls within the bulk is clarified and the significance of curvature effects for the local conduction is shown down to the nanoscale. The findings provide insights into the propagation of electrical currents in domain wall networks, reveal additional degrees of freedom for their control, and provide quantitative guidelines for the design of domain-wall-based technology.

16.
Adv Sci (Weinh) ; 9(35): e2204760, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36310116

RESUMEN

Polymer dielectrics are essential for advanced electrical and electronic power systems due to their ultrafast charge-discharge rate. However, a long-standing challenge is to maintain their dielectric performance at high temperatures. Here, a layered barium titanate/polyamideimide nanocomposite reinforced with rationally designed interfaces is reported for high-temperature high-energy-density dielectrics. Nanocoatings composed of 2D montmorillonite nanosheets with anisotropic conductivities are interposed at two kinds of macroscopic interfaces: 1) the interfaces between adjacent layers in the nanocomposites (inside) and 2) the interfaces between the surface of the nanocomposite and the electrode (outside). By revealing the charge transport behavior with Kelvin probe force microscope, surface potential decay, and finite element simulation, it is demonstrated that the outside nanocoatings are observed to diminish charge injection from the electrode, while the inside nanocoatings can suppress the kinetic energy of hot carriers by redirecting their transport. In this interface-reinforced nanocomposite, an ultrahigh energy density of 2.48 J cm-3 , as well as a remarkable charge-discharge efficiency >80%, is achieved at 200 °C, six times higher than that of the nanocomposite without interfacial nanocoatings. This research unveils a novel approach for the structural design of polymer nanocomposites based on engineered interfaces to achieve high-efficient and high-temperature capacitive energy storage.

17.
Adv Mater ; 33(34): e2101374, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34288156

RESUMEN

The organic insulator-metal interface is the most important junction in flexible electronics. The strong band offset of organic insulators over the Fermi level of electrodes should theoretically impart a sufficient impediment for charge injection known as the Schottky barrier. However, defect formation through Anderson localization due to topological disorder in polymers leads to reduced barriers and hence cumbersome devices. A facile nanocoating comprising hundreds of highly oriented organic/inorganic alternating nanolayers is self-coassembled on the surface of polymer films to revive the Schottky barrier. Carrier injection over the enhanced barrier is further shunted by anisotropic 2D conduction. This new interface engineering strategy allows a significant elevation of the operating field for organic insulators by 45% and a 7× improvement in discharge efficiency for Kapton at 150 °C. This superior 2D nanocoating thus provides a defect-tolerant approach for effective reviving of the Schottky barrier, one century after its discovery, broadly applicable for flexible electronics.

18.
Nanotechnology ; 21(33): 335601, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20657040

RESUMEN

A chemical synthesis method is presented for the fabrication of high-definition segmented metal-oxide-metal (MOM) nanowires in two different ferroelectric oxide systems: Au-BaTiO(3)-Au and Au-PbTiO(3)-Au. This method entails electrodeposition of segmented nanowires of Au-TiO(2)-Au inside anodic aluminum oxide (AAO) templates, followed by topotactic hydrothermal conversion of the TiO(2) segments into BaTiO(3) or PbTiO(3) segments. Two-terminal devices from individual MOM nanowires are fabricated, and their ferroelectric properties are measured directly, without the aid of scanning probe microscopy (SPM) methods. The MOM nanowire architecture provides high-quality end-on electrical contacts to the oxide segments, and allows direct measurement of properties of nanoscale volume, strain-free oxide segments. Unusually high ferroelectric responses, for chemically synthesized oxides, in these MOM nanowires are reported, and are attributed to the lack of residual strain in the oxides. The ability to measure directly the active properties of nanoscale volume, strain-free oxides afforded by the MOM nanowire architecture has important implications for fundamental studies of not only ferroelectric nanostructures but also nanostructures in the emerging field of multiferroics.

19.
Nat Commun ; 11(1): 3308, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620841

RESUMEN

While grain boundaries (GBs) in conventional inorganic semiconductors are frequently considered as detrimental for photogenerated carrier transport, their exact role remains obscure for the emerging hybrid perovskite semiconductors. A primary challenge for GB-property investigations is that experimentally they need to be performed at the top surface, which is not only insensitive to depth-dependent inhomogeneities but also could be susceptible to topographic artifacts. Accordingly, we have developed a unique approach based on tomographic atomic force microscopy, achieving a fully-3D, photogenerated carrier transport map at the nanoscale in hybrid perovskites. This reveals GBs serving as highly interconnected conducting channels for carrier transport. We have further discovered the coexistence of two GB types in hybrid perovskites, one exhibiting enhanced carrier mobilities, while the other is insipid. Our approach reveals otherwise inaccessible buried features and previously unresolved conduction pathways, crucial for optimizing hybrid perovskites for various optoelectronic applications including solar cells and photodetectors.

20.
ACS Sens ; 5(10): 3182-3193, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32933249

RESUMEN

Long-term accurate and continuous monitoring of nitrate (NO3-) concentration in wastewater and groundwater is critical for determining treatment efficiency and tracking contaminant transport. Current nitrate monitoring technologies, including colorimetric, chromatographic, biometric, and electrochemical sensors, are not feasible for continuous monitoring. This study addressed this challenge by modifying NO3- solid-state ion-selective electrodes (S-ISEs) with poly(tetrafluoroethylene) (PTFE, (C2F4)n). The PTFE-loaded S-ISE membrane polymer matrix reduces water layer formation between the membrane and electrode/solid contact, while paradoxically, the even more hydrophobic PTFE-loaded S-ISE membrane prevents bacterial attachment despite the opposite approach of hydrophilic modifications in other antifouling sensor designs. Specifically, an optimal ratio of 5% PTFE in the S-ISE polymer matrix was determined by a series of characterization tests in real wastewater. Five percent of PTFE alleviated biofouling to the sensor surface by enhancing the negative charge (-4.5 to -45.8 mV) and lowering surface roughness (Ra: 0.56 ± 0.02 nm). It simultaneously mitigated water layer formation between the membrane and electrode by increasing hydrophobicity (contact angle: 104°) and membrane adhesion and thus minimized the reading (mV) drift in the baseline sensitivity ("data drifting"). Long-term accuracy and durability of 5% PTFE-loaded NO3- S-ISEs were well demonstrated in real wastewater over 20 days, an improvement over commercial sensor longevity.


Asunto(s)
Electrodos de Iones Selectos , Aguas Residuales , Fluorocarburos , Nitratos/análisis , Politetrafluoroetileno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA