Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 22(32): 325702, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21772073

RESUMEN

Iron oxide magnetic nanoparticles are good candidates for magnetic resonance imaging (MRI) contrast agents due to their high magnetic susceptibilities. Here we investigate 19 polyether-coated magnetite nanoparticle systems comprising three series. All systems were synthesized from the same batch of magnetite nanoparticles. A different polyether was used for each series. Each series comprised systems with systematically varied polyether loadings per particle. A highly significant (p < 0.0001) linear correlation (r = 0.956) was found between the proton relaxivity and the intensity-weighted average diameter measured by dynamic light scattering in the 19 particle systems studied. The intensity-weighted average diameter measured by dynamic light scattering is sensitive to small number fractions of larger particles/aggregates. We conclude that the primary effect leading to differences in proton relaxivity between systems arises from the small degree of aggregation within the samples, which appears to be determined by the nature of the polymer and, for one system, the degree of polymer loading of the particles. For the polyether coatings used in this study, any changes in relaxivity from differences in water exclusion or diffusion rates caused by the polymer are minor in comparison with the changes in relaxivity resulting from variations in the degree of aggregation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA