Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Am J Emerg Med ; 38(9): 1816-1819, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32738475

RESUMEN

OBJECTIVE: To determine the impact of reported beta-lactam allergies on in-hospital mortality and other clinical outcomes in patients who presented with severe sepsis or septic shock. METHODS: This single-center, retrospective cohort study was performed at a 35-bed emergency department in central Kentucky. Patients presenting with sepsis, aged 18years or older, were identified between October 2016 and June 2017. RESULTS: 438 patients with severe sepsis and/or septic shock were identified. Rates of the combined endpoint of in-hospital mortality or transfer to hospice were similar in patients with a beta-lactam allergy (7.2%) versus those with no reported beta-lactam allergy (10.4%) (p=0.41). Time to initiation of antibiotic therapy was slightly longer in the beta-lactam allergic group (2.2h) versus those with no reported beta-lactam allergy (2.15h), but the difference was not statistically significant (p=0.993). Patients were 20.9% more likely to receive an appropriate empiric antibiotic, based off of retrospective culture review, if they did not report a beta-lactam allergy (p=0.009). This led to a delay in effective therapy of 1.59h in the reported beta-lactam allergy arm (p=0.037). CONCLUSIONS: Adequate documentation of beta-lactam allergies is vital to ensure timely and appropriate treatment in patients presenting with severe sepsis and septic shock. Choosing alternative treatment options results in increased time to effective antibiotics, reduced likelihood of covering cultures with first antibiotic, and increased total hospital and variable direct cost.


Asunto(s)
Antibacterianos/uso terapéutico , Hipersensibilidad a las Drogas/epidemiología , Choque Séptico/tratamiento farmacológico , Choque Séptico/mortalidad , beta-Lactamas/efectos adversos , Anciano , Anciano de 80 o más Años , Femenino , Mortalidad Hospitalaria , Humanos , Kentucky/epidemiología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
2.
J Biol Chem ; 289(46): 31818-31826, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25258312

RESUMEN

The mammalian target of rapamycin (mTOR) pathway regulates stem cell regeneration and differentiation in response to growth factors, nutrients, cellular energetics, and various extrinsic stressors. Inhibition of mTOR activity has been shown to enhance the regenerative potential of pluripotent stem cells. DEPTOR is the only known endogenous inhibitor of all known cellular mTOR functions. We show that DEPTOR plays a key role in maintaining stem cell pluripotency by limiting mTOR activity in undifferentiated embryonic stem cells (ESCs). DEPTOR levels dramatically decrease with differentiation of mouse ESCs, and knockdown of DEPTOR is sufficient to promote ESC differentiation. A strong decrease in DEPTOR expression is also observed during human ESCs differentiation. Furthermore, reduction in DEPTOR level during differentiation is accompanied by a corresponding increase in mTOR complex 1 activity in mouse ESCs. Our data provide evidence that DEPTOR is a novel stemness factor that promotes pluripotency and self-renewal in ESCs by inhibiting mTOR signaling.


Asunto(s)
Células Madre Embrionarias/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Madre Pluripotentes/citología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Diferenciación Celular , Línea Celular , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Neurogénesis , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal , Células Madre/citología , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
3.
J Biol Chem ; 289(10): 6709-6726, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24407293

RESUMEN

Huntington disease (HD) is an inherited neurodegenerative disease caused by a CAG expansion in the HTT gene. Using yeast two-hybrid methods, we identified a large set of proteins that interact with huntingtin (HTT)-interacting proteins. This network, composed of HTT-interacting proteins (HIPs) and proteins interacting with these primary nodes, contains 3235 interactions among 2141 highly interconnected proteins. Analysis of functional annotations of these proteins indicates that primary and secondary HIPs are enriched in pathways implicated in HD, including mammalian target of rapamycin, Rho GTPase signaling, and oxidative stress response. To validate roles for HIPs in mutant HTT toxicity, we show that the Rho GTPase signaling components, BAIAP2, EZR, PIK3R1, PAK2, and RAC1, are modifiers of mutant HTT toxicity. We also demonstrate that Htt co-localizes with BAIAP2 in filopodia and that mutant HTT interferes with filopodial dynamics. These data indicate that HTT is involved directly in membrane dynamics, cell attachment, and motility. Furthermore, they implicate dysregulation in these pathways as pathological mechanisms in HD.


Asunto(s)
Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Células HEK293 , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Redes y Vías Metabólicas , Ratones , Células 3T3 NIH , Proteínas del Tejido Nervioso/genética , Seudópodos/metabolismo
4.
PLoS Genet ; 8(11): e1003042, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209424

RESUMEN

A genome-scale RNAi screen was performed in a mammalian cell-based assay to identify modifiers of mutant huntingtin toxicity. Ontology analysis of suppressor data identified processes previously implicated in Huntington's disease, including proteolysis, glutamate excitotoxicity, and mitochondrial dysfunction. In addition to established mechanisms, the screen identified multiple components of the RRAS signaling pathway as loss-of-function suppressors of mutant huntingtin toxicity in human and mouse cell models. Loss-of-function in orthologous RRAS pathway members also suppressed motor dysfunction in a Drosophila model of Huntington's disease. Abnormal activation of RRAS and a down-stream effector, RAF1, was observed in cellular models and a mouse model of Huntington's disease. We also observe co-localization of RRAS and mutant huntingtin in cells and in mouse striatum, suggesting that activation of R-Ras may occur through protein interaction. These data indicate that mutant huntingtin exerts a pathogenic effect on this pathway that can be corrected at multiple intervention points including RRAS, FNTA/B, PIN1, and PLK1. Consistent with these results, chemical inhibition of farnesyltransferase can also suppress mutant huntingtin toxicity. These data suggest that pharmacological inhibition of RRAS signaling may confer therapeutic benefit in Huntington's disease.


Asunto(s)
Enfermedad de Huntington , Proteínas del Tejido Nervioso , Interferencia de ARN , Proteínas ras , Animales , Cuerpo Estriado/ultraestructura , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Genoma Humano , Células HEK293 , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Redes y Vías Metabólicas , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/toxicidad , Proteínas del Tejido Nervioso/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Triazoles/farmacología , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética , Proteínas ras/metabolismo
5.
J Biol Chem ; 287(25): 21164-75, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22544753

RESUMEN

The mammalian target of rapamycin (mTOR) is an atypical serine/threonine kinase that responds to extracellular environment to regulate a number of cellular processes. These include cell growth, proliferation, and differentiation. Although both kinase-dependent and -independent functions of mTOR are known to be critical modulators of muscle cell differentiation and regeneration, the signaling mechanisms regulating mTOR activity during differentiation are still unclear. In this study we identify a novel mTOR interacting protein, the ubiquitin-specific protease USP9X, which acts as a negative regulator of mTOR activity and muscle differentiation. USP9X can co-immunoprecipitate mTOR with both Raptor and Rictor, components of mTOR complexes 1 and 2 (mTORC1 and -2), respectively, suggesting that it is present in both mTOR complexes. Knockdown of USP9X leads to increased mTORC1 activity in response to growth factor stimulation. Interestingly, upon initiation of differentiation of C2C12 mouse skeletal myoblasts, knockdown of USP9X increases mTORC2 activity. This increase in mTORC2 activity is accompanied by accelerated differentiation of myoblasts into myotubes. Taken together, our data describe the identification of the deubiquitinase USP9X as a novel mTORC1 and -2 binding partner that negatively regulates mTOR activity and skeletal muscle differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Endopeptidasas/metabolismo , Desarrollo de Músculos/fisiología , Proteínas Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Endopeptidasas/genética , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Proteínas Musculares/genética , Mioblastos Esqueléticos/citología , Proteínas/genética , Proteínas/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Proteína Reguladora Asociada a mTOR , Serina-Treonina Quinasas TOR/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina Tiolesterasa/genética
6.
Neuron ; 57(1): 27-40, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-18184562

RESUMEN

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by expansion of a translated CAG repeat in the N terminus of the huntingtin (htt) protein. Here we describe the generation and characterization of a full-length HD Drosophila model to reveal a previously unknown disease mechanism that occurs early in the course of pathogenesis, before expanded htt is imported into the nucleus in detectable amounts. We find that expanded full-length htt (128Qhtt(FL)) leads to behavioral, neurodegenerative, and electrophysiological phenotypes. These phenotypes are caused by a Ca2+-dependent increase in neurotransmitter release efficiency in 128Qhtt(FL) animals. Partial loss of function in synaptic transmission (syntaxin, Snap, Rop) and voltage-gated Ca2+ channel genes suppresses both the electrophysiological and the neurodegenerative phenotypes. Thus, our data indicate that increased neurotransmission is at the root of neuronal degeneration caused by expanded full-length htt during early stages of pathogenesis.


Asunto(s)
Citoplasma/metabolismo , Degeneración Nerviosa/prevención & control , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Transmisión Sináptica/fisiología , Expansión de Repetición de Trinucleótido/genética , Animales , Animales Modificados Genéticamente , Conducta Animal , Calcio/metabolismo , Modelos Animales de Enfermedad , Drosophila , Ojo/patología , Ojo/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington , Larva , Microscopía Electrónica de Rastreo/métodos , Mutación/genética , Degeneración Nerviosa/patología , Proteínas del Tejido Nervioso/genética , Neurotransmisores/metabolismo , Proteínas Nucleares/genética
7.
PLoS Genet ; 5(3): e1000414, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19293945

RESUMEN

We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins.


Asunto(s)
Envejecimiento/genética , Longevidad/genética , Mapeo de Interacción de Proteínas , Proteómica/métodos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Biología Computacional/métodos , Humanos , Invertebrados , Músculos , Nematodos/genética , Nematodos/fisiología , Fenómenos Fisiológicos/genética , Transcripción Genética
8.
J Biol Chem ; 285(41): 31616-33, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20682791

RESUMEN

Ecm29 is a 200-kDa HEAT repeat protein that binds the 26 S proteasome. Genome-wide two-hybrid screens and mass spectrometry have identified molecular motors, endosomal components, and ubiquitin-proteasome factors as Ecm29-interacting proteins. The C-terminal half of human Ecm29 binds myosins and kinesins; its N-terminal region binds the endocytic proteins, Vps11, Rab11-FIP4, and rabaptin. Whereas full-length FLAG-Ecm29, its C-terminal half, and a small central fragment of Ecm29 remain bound to glycerol-gradient-separated 26 S proteasomes, the N-terminal half of Ecm29 does not. Confocal microscopy showed that Ecm-26 S proteasomes are present on flotillin-positive endosomes, but they are virtually absent from caveolin- and clathrin-decorated endosomes. Expression of the small central fragment of Ecm29 markedly reduces proteasome association with flotillin-positive endosomes. Identification of regions within Ecm29 capable of binding molecular motors, endosomal proteins, and the 26 S proteasome supports the hypothesis that Ecm29 serves as an adaptor for coupling 26 S proteasomes to specific cellular compartments.


Asunto(s)
Endosomas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Endosomas/genética , Células HeLa , Humanos , Ratones , Proteínas Motoras Moleculares/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
9.
J Biol Chem ; 285(48): 37445-57, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20858895

RESUMEN

Cellular responses to drug treatment show tremendous variations. Elucidating mechanisms underlying these variations is critical for predicting therapeutic responses and developing personalized therapeutics. Using a small molecule screening approach, we discovered how a disease causing allele leads to opposing cell fates upon pharmacological perturbation. Diverse microtubule-depolymerizing agents protected mutant huntingtin-expressing cells from cell death, while being toxic to cells lacking mutant huntingtin or those expressing wild-type huntingtin. Additional neuronal cell lines and primary neurons from Huntington disease mice also showed altered survival upon microtubule depolymerization. Transcription profiling revealed that microtubule depolymerization induced the autocrine growth factor connective tissue growth factor and activated ERK survival signaling. The genotype-selective rescue was dependent upon increased RhoA protein levels in mutant huntingtin-expressing cells, because inhibition of RhoA, its downstream effector, Rho-associated kinase (ROCK), or a microtubule-associated RhoA activator, guanine nucleotide exchange factor-H1 (GEF-H1), all attenuated the rescue. Conversely, RhoA overexpression in cells lacking mutant huntingtin conferred resistance to microtubule-depolymerizer toxicity. This study elucidates a novel pathway linking microtubule stability to cell survival and provides insight into how genetic context can dramatically alter cellular responses to pharmacological interventions.


Asunto(s)
Enfermedad de Huntington/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Transducción de Señal , Animales , Apoptosis , Muerte Celular , Línea Celular , Supervivencia Celular , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Ratones , Microtúbulos/genética , Mutación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteínas Nucleares/metabolismo , Ratas , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
10.
Nature ; 438(7064): 103-7, 2005 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-16267556

RESUMEN

Plasmodium falciparum causes the most severe form of malaria and kills up to 2.7 million people annually. Despite the global importance of P. falciparum, the vast majority of its proteins have not been characterized experimentally. Here we identify P. falciparum protein-protein interactions using a high-throughput version of the yeast two-hybrid assay that circumvents the difficulties in expressing P. falciparum proteins in Saccharomyces cerevisiae. From more than 32,000 yeast two-hybrid screens with P. falciparum protein fragments, we identified 2,846 unique interactions, most of which include at least one previously uncharacterized protein. Informatic analyses of network connectivity, coexpression of the genes encoding interacting fragments, and enrichment of specific protein domains or Gene Ontology annotations were used to identify groups of interacting proteins, including one implicated in chromatin modification, transcription, messenger RNA stability and ubiquitination, and another implicated in the invasion of host cells. These data constitute the first extensive description of the protein interaction network for this important human pathogen.


Asunto(s)
Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Técnicas del Sistema de Dos Híbridos , Animales , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
11.
PLoS Genet ; 3(5): e82, 2007 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-17500595

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt) protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%-4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to co-immunoprecipitate with full-length Htt from mouse brain. These studies demonstrate that high-throughput screening for protein interactions combined with genetic validation in a model organism is a powerful approach for identifying novel candidate modifiers of polyglutamine toxicity.


Asunto(s)
Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Drosophila melanogaster/efectos de los fármacos , Humanos , Proteína Huntingtina , Inmunoprecipitación , Ratones , Modelos Neurológicos , Péptidos/toxicidad , Unión Proteica , Mapeo de Interacción de Proteínas , Reproducibilidad de los Resultados
12.
Malar J ; 7: 211, 2008 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-18937849

RESUMEN

BACKGROUND: In order to establish a successful infection in the human host, the malaria parasite Plasmodium falciparum must establish interactions with a variety of human proteins on the surface of different cell types, as well as with proteins inside the host cells. To better understand this aspect of malaria pathogenesis, a study was conducted with the goal of identifying interactions between proteins of the parasite and those of its human host. METHODS: A modified yeast two-hybrid methodology that preferentially selects protein fragments that can be expressed in yeast was used to conduct high-throughput screens with P. falciparum protein fragments against human liver and cerebellum libraries. The resulting dataset was analyzed to exclude interactions that are not likely to occur in the human host during infection. RESULTS: An initial set of 2,200 interactions was curated to remove proteins that are unlikely to play a role in pathogenesis based on their annotation or localization, and proteins that behave promiscuously in the two-hybrid assay, resulting in a final dataset of 456 interactions. A cluster that implicates binding between P. falciparum PFE1590w/ETRAMP5, a putative parasitophorous vacuole membrane protein, and human apolipoproteins ApoA, ApoB and ApoE was selected for further analysis. Different isoforms of ApoE, which are associated with different outcomes of malaria infection, were shown to display differential interactions with PFE1590w. CONCLUSION: A dataset of interactions between proteins of P. falciparum and those of its human host was generated. The preferential interaction of the P. falciparum PFE1590w protein with the human ApoE epsilon3 and ApoE epsilon4 isoforms, but not the ApoE epsilon2 isoform, supports the hypothesis that ApoE genotype affects risk of malaria infection. The dataset contains other interactions of potential relevance to disease that may identify possible vaccine candidates and drug targets.


Asunto(s)
Apolipoproteínas E/metabolismo , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Animales , Apolipoproteínas A/metabolismo , Apolipoproteínas B/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Unión Proteica , Técnicas del Sistema de Dos Híbridos
13.
G3 (Bethesda) ; 8(11): 3421-3431, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30194090

RESUMEN

A feature common to late onset proteinopathic disorders is an accumulation of toxic protein conformers and aggregates in affected tissues. In the search for potential drug targets, many studies used high-throughput screens to find genes that modify the cytotoxicity of misfolded proteins. A complement to this approach is to focus on strategies that use protein aggregation as a phenotypic readout to identify pathways that control aggregate formation and maintenance. Here we use natural variation between strains of budding yeast to genetically map loci that influence the aggregation of a polyglutamine-containing protein derived from a mutant form of huntingtin, the causative agent in Huntington disease. Linkage analysis of progeny derived from a cross between wild and laboratory yeast strains revealed two polymorphic loci that modify polyglutamine aggregation. One locus contains the gene RFU1 which modifies ubiquitination states of misfolded proteins targeted by the E3-ubiquitin ligase complex Rsp5 Activity of the Rsp5 complex, and the mammalian homolog NEDD4, are critical in maintaining protein homeostasis in response to proteomic stress. Our analysis also showed linkage of the aggregation phenotype to a distinct locus containing a gene encoding the Rsp5-interacting Bul2 protein. Allele-swap experiments validated the impact of both RFU1 and BUL2 on huntingtin aggregation. Furthermore, we found that the nematode Caenorhabditis elegans' ortholog of Rsp5, wwp-1, also negatively regulates polyglutamine aggregation. Knockdown of the NEDD4 in human cells likewise altered polyglutamine aggregation. Taken together, these results implicate conserved processes involving the ubiquitin regulation network that modify protein aggregation and provide novel therapeutic targets for polyglutamine and other protein folding diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Caenorhabditis elegans/genética , Ubiquitina-Proteína Ligasas Nedd4/genética , Péptidos/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Caenorhabditis elegans , Variación Genética , Células HEK293 , Humanos , Mutación , Saccharomycetales/fisiología
15.
Aging Cell ; 15(5): 832-41, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27220516

RESUMEN

Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug-like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology.


Asunto(s)
Caenorhabditis elegans/fisiología , Privación de Alimentos/fisiología , Longevidad/fisiología , Transducción de Señal , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Restricción Calórica , Canales de Cloruro/metabolismo , Conducta Alimentaria/efectos de los fármacos , Glutamatos/metabolismo , Longevidad/efectos de los fármacos , Modelos Biológicos , Contracción Muscular/efectos de los fármacos , Mutación/genética , Faringe/efectos de los fármacos , Faringe/fisiología , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
16.
G3 (Bethesda) ; 6(1): 161-70, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26585826

RESUMEN

Adenosine triphosphate (ATP) plays an important role as a primary molecule for the transfer of chemical energy to drive biological processes. ATP also functions as an extracellular signaling molecule in a diverse array of eukaryotic taxa in a conserved process known as purinergic signaling. Given the important roles of extracellular ATP in cell signaling, we sought to comprehensively elucidate the pathways and mechanisms governing ATP efflux from eukaryotic cells. Here, we present results of a genomic analysis of ATP efflux from Saccharomyces cerevisiae by measuring extracellular ATP levels in cultures of 4609 deletion mutants. This screen revealed key cellular processes that regulate extracellular ATP levels, including mitochondrial translation and vesicle sorting in the late endosome, indicating that ATP production and transport through vesicles are required for efflux. We also observed evidence for altered ATP efflux in strains deleted for genes involved in amino acid signaling, and mitochondrial retrograde signaling. Based on these results, we propose a model in which the retrograde signaling pathway potentiates amino acid signaling to promote mitochondrial respiration. This study advances our understanding of the mechanism of ATP secretion in eukaryotes and implicates TOR complex 1 (TORC1) and nutrient signaling pathways in the regulation of ATP efflux. These results will facilitate analysis of ATP efflux mechanisms in higher eukaryotes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Genoma Fúngico , Genómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biología Computacional/métodos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Espacio Extracelular/metabolismo , Ontología de Genes , Genómica/métodos , Redes y Vías Metabólicas , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Transducción de Señal
17.
PLoS One ; 9(2): e89938, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24587137

RESUMEN

Mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH) is a ubiquinone-linked enzyme in the mitochondrial inner membrane best characterized as part of the glycerol phosphate shuttle that transfers reducing equivalents from cytosolic NADH into the mitochondrial electron transport chain. Despite the widespread expression of mGPDH and the availability of mGPDH-null mice, the physiological role of this enzyme remains poorly defined in many tissues, likely because of compensatory pathways for cytosolic regeneration of NAD⁺ and mechanisms for glycerol phosphate metabolism. Here we describe a novel class of cell-permeant small-molecule inhibitors of mGPDH (iGP) discovered through small-molecule screening. Structure-activity analysis identified a core benzimidazole-phenyl-succinamide structure as being essential to inhibition of mGPDH while modifications to the benzimidazole ring system modulated both potency and off-target effects. Live-cell imaging provided evidence that iGPs penetrate cellular membranes. Two compounds (iGP-1 and iGP-5) were characterized further to determine potency and selectivity and found to be mixed inhibitors with IC50 and K(i) values between ∼1-15 µM. These novel mGPDH inhibitors are unique tools to investigate the role of glycerol 3-phosphate metabolism in both isolated and intact systems.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/antagonistas & inhibidores , Membranas Mitocondriales/metabolismo , Amidas/química , Amidas/metabolismo , Animales , Bencimidazoles/química , Bencimidazoles/metabolismo , Fluorescencia , Concentración 50 Inhibidora , Ratones , Modelos Biológicos , Estructura Molecular , Músculo Esquelético/citología , Relación Estructura-Actividad , Succinatos/química , Succinatos/metabolismo
18.
Free Radic Biol Med ; 65: 1047-1059, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23994103

RESUMEN

Mitochondrial production of reactive oxygen species is often considered an unavoidable consequence of aerobic metabolism and currently cannot be manipulated without perturbing oxidative phosphorylation. Antioxidants are widely used to suppress effects of reactive oxygen species after formation, but they can never fully prevent immediate effects at the sites of production. To identify site-selective inhibitors of mitochondrial superoxide/H2O2 production that do not interfere with mitochondrial energy metabolism, we developed a robust small-molecule screen and secondary profiling strategy. We describe the discovery and characterization of a compound (N-cyclohexyl-4-(4-nitrophenoxy)benzenesulfonamide; CN-POBS) that selectively inhibits superoxide/H2O2 production from the ubiquinone-binding site of complex I (site I(Q)) with no effects on superoxide/H2O2 production from other sites or on oxidative phosphorylation. Structure/activity studies identified a core structure that is important for potency and selectivity for site I(Q). By employing CN-POBS in mitochondria respiring on NADH-generating substrates, we show that site I(Q) does not produce significant amounts of superoxide/H2O2 during forward electron transport on glutamate plus malate. Our screening platform promises to facilitate further discovery of direct modulators of mitochondrially derived oxidative damage and advance our ability to understand and manipulate mitochondrial reactive oxygen species production under both normal and pathological conditions.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Inhibidores Enzimáticos/farmacología , Mitocondrias Musculares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Sitios de Unión , Femenino , Ensayos Analíticos de Alto Rendimiento , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Musculares/efectos de los fármacos , Oxidación-Reducción , Ratas Wistar , Ubiquinona/metabolismo
19.
J Huntingtons Dis ; 1(2): 195-210, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23393546

RESUMEN

BACKGROUND: Huntington's disease (HD) is a dominantly inherited neurodegenerative condition characterized by dysfunction in striatal and cortical neurons. There are currently no approved drugs known to slow the progression of HD. OBJECTIVE: To facilitate the development of therapies for HD, we identified approved drugs that can ameliorate mutant huntingtin-induced toxicity in experimental models of HD. METHODS: A chemical screen was performed in a mouse Hdh(Q111/Q111) striatal cell model of HD. This screen identified a set of structurally related approved drugs (pizotifen, cyproheptadine, and loxapine) that rescued cell death in this model. Pizotifen was subsequently evaluated in the R6/2 HD mouse model. RESULTS: We found that in striatal Hdh(Q111/Q111) cells, pizotifen treatment caused transient ERK activation and inhibition of ERK activation prevented rescue of cell death in this model. In the R6/2 HD mouse model, treatment with pizotifen activated ERK in the striatum, reduced neurodegeneration and significantly enhanced motor performance. CONCLUSIONS: These results suggest that pizotifen and related approved drugs may provide a basis for developing disease modifying therapeutic interventions for HD.


Asunto(s)
Cuerpo Estriado/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/prevención & control , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/metabolismo , Pizotilina/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Cuerpo Estriado/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Enfermedad de Huntington/diagnóstico , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/administración & dosificación , Resultado del Tratamiento
20.
Mol Biol Cell ; 23(24): 4679-88, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23097491

RESUMEN

Accumulation of insoluble protein in cells is associated with aging and aging-related diseases; however, the roles of insoluble protein in these processes are uncertain. The nature and impact of changes to protein solubility during normal aging are less well understood. Using quantitative mass spectrometry, we identify 480 proteins that become insoluble during postmitotic aging in Saccharomyces cerevisiae and show that this ensemble of insoluble proteins is similar to those that accumulate in aging nematodes. SDS-insoluble protein is present exclusively in a nonquiescent subpopulation of postmitotic cells, indicating an asymmetrical distribution of this protein. In addition, we show that nitrogen starvation of young cells is sufficient to cause accumulation of a similar group of insoluble proteins. Although many of the insoluble proteins identified are known to be autophagic substrates, induction of macroautophagy is not required for insoluble protein formation. However, genetic or chemical inhibition of the Tor1 kinase is sufficient to promote accumulation of insoluble protein. We conclude that target of rapamycin complex 1 regulates accumulation of insoluble proteins via mechanisms acting upstream of macroautophagy. Our data indicate that the accumulation of proteins in an SDS-insoluble state in postmitotic cells represents a novel autophagic cargo preparation process that is regulated by the Tor1 kinase.


Asunto(s)
Autofagia , Nitrógeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína 7 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masas , Diana Mecanicista del Complejo 1 de la Rapamicina , Mitosis , Complejos Multiproteicos/metabolismo , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Dodecil Sulfato de Sodio/química , Solubilidad , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA