Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.417
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(4)2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38124193

RESUMEN

K+-Cl- cotransporter-2 (KCC2) critically controls neuronal chloride homeostasis and maintains normal synaptic inhibition by GABA and glycine. Nerve injury diminishes synaptic inhibition in the spinal cord via KCC2 impairment. However, how KCC2 regulates nociceptive input to spinal excitatory and inhibitory neurons remains elusive. Here, we show that basal GABA reversal potentials were significantly more depolarized in vesicular GABA transporter (VGAT)-expressing inhibitory neurons than those in vesicular glutamate transporter-2 (VGluT2)-expressing excitatory neurons in spinal cords of male and female mice. Strikingly, inhibiting KCC2 with VU0463271 increased currents elicited by puff NMDA and the NMDAR-mediated frequency of mEPSCs in VGluT2, but not in VGAT, dorsal horn neurons. Notably, VU0463271 had no effect on EPSCs monosynaptically evoked from the dorsal root in VGluT2 neurons. Furthermore, VU0463271 augmented α2δ-1-NMDAR interactions and their protein levels in spinal cord synaptosomes. In Cacna2d1 KO mice, VU0463271 had no effect on puff NMDA currents or the mEPSC frequency in dorsal horn neurons. Disrupting α2δ-1-NMDAR interactions with α2δ-1 C-terminus mimicking peptide diminished VU0463271-induced potentiation in the mEPSC frequency and puff NMDA currents in VGluT2 neurons. Additionally, intrathecal injection of VU0463271 reduced mechanical and thermal thresholds in wild-type mice, but not in Cacna2d1 KO mice. VU0463271-induced pain hypersensitivity in mice was abrogated by co-treatment with the NMDAR antagonist, pregabalin (an α2δ-1 inhibitory ligand), or α2δ-1 C-terminus mimicking peptide. Our findings suggest that KCC2 controls presynaptic and postsynaptic NMDAR activity specifically in excitatory dorsal horn neurons. KCC2 impairment preferentially potentiates nociceptive transmission between spinal excitatory interneurons via α2δ-1-bound NMDARs.Significance statementImpaired function of potassium-chloride cotransporter-2 (KCC2), a key regulator of neuronal inhibition, in the spinal cord plays a major role in neuropathic pain. This study unveils that KCC2 controls spinal nociceptive synaptic strength via NMDA receptors in a cell type- and synapse type-specific manner. KCC2 inhibition preferentially augments presynaptic and postsynaptic NMDA receptor activity in spinal excitatory interneurons via α2δ-1 (previously known as a calcium channel subunit). Importantly, spinal KCC2 impairment triggers pain hypersensitivity through α2δ-1-coupled NMDA receptors. These findings pinpoint the cell and molecular substrates for the reciprocal relationship between spinal synaptic inhibition and excitation in chronic neuropathic pain. Targeting both KCC2 and α2δ-1­NMDA receptor complexes could be an effective strategy in managing neuropathic pain conditions.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Simportadores , Animales , Femenino , Masculino , Ratones , Ácido gamma-Aminobutírico/metabolismo , N-Metilaspartato/farmacología , Péptidos/farmacología , Células del Asta Posterior/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Médula Espinal/metabolismo , Simportadores/genética , Simportadores/metabolismo , Sinapsis/metabolismo
2.
J Neurosci ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886057

RESUMEN

Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506), are commonly used immunosuppressants for preserving transplanted organs and tissues. However, these drugs can cause severe and persistent pain. GluA2-lacking, calcium-permeable AMPA receptors (CP-AMPARs) are implicated in various neurological disorders, including neuropathic pain. It is unclear whether and how constitutive calcineurin, a Ca2+/calmodulin protein phosphatase, controls synaptic CP-AMPARs. In this study, we found that blocking CP-AMPARs with IEM-1460 markedly reduced the amplitude of AMPAR-EPSCs in excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2), but not in inhibitory neurons expressing vesicular GABA transporter, in the spinal cord of FK506-treated male and female mice. FK506 treatment also caused an inward rectification in the current-voltage relationship of AMPAR-EPSCs specifically in VGluT2 neurons. Intrathecal injection of IEM-1460 rapidly alleviated pain hypersensitivity in FK506-treated mice. Furthermore, FK506 treatment substantially increased physical interaction of α2δ-1 with GluA1 and GluA2 in the spinal cord and reduced GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of spinal cords. Correspondingly, inhibiting α2δ-1 with pregabalin, Cacna2d1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C-terminus peptide reversed inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons caused by FK506 treatment. In addition, CK2 inhibition reversed FK506 treatment-induced pain hypersensitivity, α2δ-1 interactions with GluA1 and GluA2, and inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons. Thus, the increased prevalence of synaptic CP-AMPARs in spinal excitatory neurons plays a major role in calcineurin inhibitor-induced pain hypersensitivity. Calcineurin and CK2 antagonistically regulate postsynaptic CP-AMPARs through α2δ-1-mediated GluA1/GluA2 heteromeric assembly in the spinal dorsal horn.Significance Statement Clinically used calcineurin inhibitors can cause severe pain, known as calcineurin inhibitor-induced pain syndrome (CIPS). However, its underlying mechanisms remain elusive. This study shows for the first time that calcineurin inhibition caused cell type-specific expression of synaptic Ca2+-permeable AMPARs in spinal cord excitatory neurons. Blocking spinal Ca2+-permeable AMPARs reduced CIPS. Calcineurin inhibition potentiated the α2δ-1 (previously known as a calcium channel subunit) interaction with GluA1 and GluA2 subunits, disrupting their intracellular assembly in the spinal cord. Additionally, inhibiting spinal CK2 diminished α2δ-1-AMPAR interactions and synaptic Ca2+-permeable AMPARs augmented by calcineurin inhibitors. Thus, calcineurin and CK2 dynamically control AMPAR phenotypes in spinal excitatory neurons through α2δ-1-mediated GluA1/GluA2 assembly. Targeting α2δ-1 and CK2 are effective strategies for treating CIPS.

3.
J Biol Chem ; 300(2): 105597, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160798

RESUMEN

Increased expression of angiotensin II AT1A receptor (encoded by Agtr1a) and Na+-K+-Cl- cotransporter-1 (NKCC1, encoded by Slc12a2) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension development. However, little is known about their transcriptional control in the PVN in hypertension. DNA methylation is a critical epigenetic mechanism that regulates gene expression. Here, we determined whether transcriptional activation of Agtr1a and Slc12a2 results from altered DNA methylation in spontaneously hypertensive rats (SHR). Methylated DNA immunoprecipitation and bisulfite sequencing-PCR showed that CpG methylation at Agtr1a and Slc12a2 promoters in the PVN was progressively diminished in SHR compared with normotensive Wistar-Kyoto rats (WKY). Chromatin immunoprecipitation-quantitative PCR revealed that enrichment of DNA methyltransferases (DNMT1 and DNMT3A) and methyl-CpG binding protein 2, a DNA methylation reader protein, at Agtr1a and Slc12a2 promoters in the PVN was profoundly reduced in SHR compared with WKY. By contrast, the abundance of ten-eleven translocation enzymes (TET1-3) at Agtr1a and Slc12a2 promoters in the PVN was much greater in SHR than in WKY. Furthermore, microinjecting of RG108, a selective DNMT inhibitor, into the PVN of WKY increased arterial blood pressure and correspondingly potentiated Agtr1a and Slc12a2 mRNA levels in the PVN. Conversely, microinjection of C35, a specific TET inhibitor, into the PVN of SHR markedly reduced arterial blood pressure, accompanied by a decrease in Agtr1a and Slc12a2 mRNA levels in the PVN. Collectively, our findings suggest that DNA hypomethylation resulting from the DNMT/TET switch at gene promoters in the PVN promotes transcription of Agtr1a and Slc12a2 and hypertension development.


Asunto(s)
Desmetilación del ADN , Hipotálamo , Receptor de Angiotensina Tipo 1 , Miembro 2 de la Familia de Transportadores de Soluto 12 , Animales , Ratas , Presión Sanguínea , ADN/metabolismo , Hipertensión/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Angiotensina Tipo 1/metabolismo , ARN Mensajero/genética , Sistema Nervioso Simpático/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
4.
Circ Res ; 133(7): 611-627, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37605933

RESUMEN

BACKGROUND: Calcineurin is highly enriched in immune T cells and the nervous system. Calcineurin inhibitors, including cyclosporine and tacrolimus (FK506), are the cornerstone of immunosuppressive regimens for preserving transplanted organs and tissues. However, these drugs often cause persistent hypertension owing to excess sympathetic outflow, which is maintained by N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory input to the hypothalamic paraventricular nucleus (PVN). It is unclear how calcineurin inhibitors increase NMDAR activity in the PVN to augment sympathetic vasomotor activity. α2δ-1 (encoded by the Cacna2d1 gene), known colloquially as a calcium channel subunit, is a newly discovered NMDAR-interacting protein. In this study, we determined whether α2δ-1 plays a role in calcineurin inhibitor-induced synaptic NMDAR hyperactivity in the PVN and hypertension development. METHODS: Immunoblotting and coimmunoprecipitation assays were used to quantify synaptic protein levels and the physical interaction between GluN1 (the obligatory NMDAR subunit) and α2δ-1. Whole-cell patch-clamp recordings of retrogradely labeled, spinally projecting PVN were conducted in perfused brain slices to measure presynaptic and postsynaptic NMDAR activity. Radio-telemetry was implanted in rodents to continuously record arterial blood pressure in conscious states. RESULTS: Prolonged treatment with FK506 in rats significantly increased protein levels of α2δ-1, GluN1, and the α2δ-1-GluN1 complex in PVN synaptosomes. These effects were blocked by inhibiting α2δ-1 with gabapentin or interrupting the α2δ-1-NMDAR interaction with an α2δ-1 C-terminus peptide. Treatment with FK506 potentiated the activity of presynaptic and postsynaptic NMDARs in spinally projecting PVN neurons; such effects were abolished by gabapentin, Cacna2d1 knockout, or α2δ-1 C-terminus peptide. Furthermore, microinjection of α2δ-1 C-terminus peptide into the PVN diminished renal sympathetic nerve discharges and arterial blood pressure that had been increased by FK506 treatment. Remarkably, concurrent administration of gabapentin prevented the development of FK506-induced hypertension in rats. Additionally, FK506 treatment induced sustained hypertension in wild-type mice but not in Cacna2d1 knockout mice. CONCLUSIONS: α2δ-1 is essential for calcineurin inhibitor-induced increases in synaptic NMDAR activity in PVN presympathetic neurons and sympathetic outflow. Thus, α2δ-1 and α2δ-1-bound NMDARs represent new targets for treating calcineurin inhibitor-induced hypertension. Gabapentinoids (gabapentin and pregabalin) could be repurposed for treating calcineurin inhibitor-induced neurogenic hypertension.


Asunto(s)
Inhibidores de la Calcineurina , Hipertensión , Animales , Ratones , Ratas , Inhibidores de la Calcineurina/farmacología , Receptores de N-Metil-D-Aspartato , Tacrolimus/toxicidad , Gabapentina , Encéfalo , Hipertensión/inducido químicamente , Ácido Aspártico
5.
J Neurosci ; 43(31): 5593-5607, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37451981

RESUMEN

Aberrant activation of presynaptic NMDARs in the spinal dorsal horn is integral to opioid-induced hyperalgesia and analgesic tolerance. However, the signaling mechanisms responsible for opioid-induced NMDAR hyperactivity remain poorly identified. Here, we show that repeated treatment with morphine or fentanyl reduced monomeric mGluR5 protein levels in the dorsal root ganglion (DRG) but increased levels of mGluR5 monomers and homodimers in the spinal cord in mice and rats of both sexes. Coimmunoprecipitation analysis revealed that monomeric and dimeric mGluR5 in the spinal cord, but not monomeric mGluR5 in the DRG, directly interacted with GluN1. By contrast, mGluR5 did not interact with µ-opioid receptors in the DRG or spinal cord. Repeated morphine treatment markedly increased the mGluR5-GluN1 interaction and protein levels of mGluR5 and GluN1 in spinal synaptosomes. The mGluR5 antagonist MPEP reversed morphine treatment-augmented mGluR5-GluN1 interactions, GluN1 synaptic expression, and dorsal root-evoked monosynaptic EPSCs of dorsal horn neurons. Furthermore, CRISPR-Cas9-induced conditional mGluR5 knockdown in DRG neurons normalized mGluR5 levels in spinal synaptosomes and NMDAR-mediated EPSCs of dorsal horn neurons increased by morphine treatment. Correspondingly, intrathecal injection of MPEP or conditional mGluR5 knockdown in DRG neurons not only potentiated the acute analgesic effect of morphine but also attenuated morphine treatment-induced hyperalgesia and tolerance. Together, our findings suggest that opioid treatment promotes mGluR5 trafficking from primary sensory neurons to the spinal dorsal horn. Through dimerization and direct interaction with NMDARs, presynaptic mGluR5 potentiates and/or stabilizes NMDAR synaptic expression and activity at primary afferent central terminals, thereby maintaining opioid-induced hyperalgesia and tolerance.SIGNIFICANCE STATEMENT Opioids are essential analgesics for managing severe pain caused by cancer, surgery, and tissue injury. However, these drugs paradoxically induce pain hypersensitivity and tolerance, which can cause rapid dose escalation and even overdose mortality. This study demonstrates, for the first time, that opioids promote trafficking of mGluR5, a G protein-coupled glutamate receptor, from peripheral sensory neurons to the spinal cord; there, mGluR5 proteins dimerize and physically interact with NMDARs to augment their synaptic expression and activity. Through dynamic interactions, the two distinct glutamate receptors mutually amplify and sustain nociceptive input from peripheral sensory neurons to the spinal cord. Thus, inhibiting mGluR5 activity or disrupting mGluR5-NMDAR interactions could reduce opioid-induced hyperalgesia and tolerance and potentiate opioid analgesic efficacy.


Asunto(s)
Neuralgia , Receptores de N-Metil-D-Aspartato , Masculino , Femenino , Ratas , Ratones , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Analgésicos Opioides/efectos adversos , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Ratas Sprague-Dawley , Morfina/efectos adversos , Asta Dorsal de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriales/metabolismo
6.
J Neurosci ; 43(21): 3933-3948, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37185237

RESUMEN

The spinal dorsal horn contains vesicular glutamate transporter-2 (VGluT2)-expressing excitatory neurons and vesicular GABA transporter (VGAT)-expressing inhibitory neurons, which normally have different roles in nociceptive transmission. Spinal glutamate NMDAR hyperactivity is a crucial mechanism of chronic neuropathic pain. However, it is unclear how NMDARs regulate primary afferent input to spinal excitatory and inhibitory neurons in neuropathic pain. Also, the functional significance of presynaptic NMDARs in neuropathic pain has not been defined explicitly. Here we showed that paclitaxel treatment or spared nerve injury (SNI) similarly increased the NMDAR-mediated mEPSC frequency and dorsal root-evoked EPSCs in VGluT2 dorsal horn neurons in male and female mice. By contrast, neither paclitaxel nor SNI had any effect on mEPSCs or evoked EPSCs in VGAT neurons. In mice with conditional Grin1 (gene encoding GluN1) KO in primary sensory neurons (Grin1-cKO), paclitaxel treatment failed to induce pain hypersensitivity. Unexpectedly, SNI still caused long-lasting pain hypersensitivity in Grin1-cKO mice. SNI increased the amplitude of puff NMDA currents in VGluT2 neurons and caused similar depolarizing shifts in GABA reversal potentials in WT and Grin1-cKO mice. Concordantly, spinal Grin1 knockdown diminished SNI-induced pain hypersensitivity. Thus, presynaptic NMDARs preferentially amplify primary afferent input to spinal excitatory neurons in neuropathic pain. Although presynaptic NMDARs are required for chemotherapy-induced pain hypersensitivity, postsynaptic NMDARs in spinal excitatory neurons play a dominant role in traumatic nerve injury-induced chronic pain. Our findings reveal the divergent synaptic connectivity and functional significance of spinal presynaptic and postsynaptic NMDARs in regulating cell type-specific nociceptive input in neuropathic pain with different etiologies.SIGNIFICANCE STATEMENT Spinal excitatory neurons relay input from nociceptors, whereas inhibitory neurons repress spinal nociceptive transmission. Chronic nerve pain is associated with aberrant NMDAR activity in the spinal dorsal horn. This study demonstrates, for the first time, that chemotherapy and traumatic nerve injury preferentially enhance the NMDAR activity at primary afferent-excitatory neuron synapses but have no effect on primary afferent input to spinal inhibitory neurons. NMDARs in primary sensory neurons are essential for chemotherapy-induced chronic pain, whereas nerve trauma causes pain hypersensitivity predominantly via postsynaptic NMDARs in spinal excitatory neurons. Thus, presynaptic and postsynaptic NMDARs at primary afferent-excitatory neuron synapses are differentially engaged in chemotherapy- and nerve injury-induced chronic pain and could be targeted respectively for treating these painful conditions.


Asunto(s)
Antineoplásicos , Dolor Crónico , Neuralgia , Ratas , Ratones , Masculino , Femenino , Animales , Receptores de N-Metil-D-Aspartato , Dolor Crónico/etiología , Ratas Sprague-Dawley , Sinapsis/fisiología , Paclitaxel/efectos adversos , Células del Asta Posterior/fisiología , Neuronas , Antineoplásicos/efectos adversos
7.
J Physiol ; 602(10): 2179-2197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38630836

RESUMEN

Hypertension is a major adverse effect of calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, used clinically as immunosuppressants. Calcineurin inhibitor-induced hypertension (CIH) is linked to augmented sympathetic output from the hypothalamic paraventricular nucleus (PVN). GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) are a key feature of glutamatergic synaptic plasticity, yet their role in CIH remains elusive. Here, we found that systemic administration of FK506 in rats significantly increased serine phosphorylation of GluA1 and GluA2 in PVN synaptosomes. Strikingly, FK506 treatment reduced GluA1/GluA2 heteromers in both synaptosomes and endoplasmic reticulum-enriched fractions from the PVN. Blocking CP-AMPARs with IEM-1460 induced a larger reduction of AMPAR-mediated excitatory postsynaptic current (AMPAR-EPSC) amplitudes in retrogradely labelled, spinally projecting PVN neurons in FK506-treated rats than in vehicle-treated rats. Furthermore, FK506 treatment shifted the current-voltage relationship of AMPAR-EPSCs from linear to inward rectification in labelled PVN neurons. FK506 treatment profoundly enhanced physical interactions of α2δ-1 with GluA1 and GluA2 in the PVN. Inhibiting α2δ-1 with gabapentin, α2δ-1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide restored GluA1/GluA2 heteromers in the PVN and diminished inward rectification of AMPAR-EPSCs in labelled PVN neurons induced by FK506 treatment. Additionally, microinjection of IEM-1460 or α2δ-1 C terminus peptide into the PVN reduced renal sympathetic nerve discharges and arterial blood pressure elevated in FK506-treated rats but not in vehicle-treated rats. Thus, calcineurin in the hypothalamus constitutively regulates AMPAR subunit composition and phenotypes by controlling GluA1/GluA2 interactions with α2δ-1. Synaptic CP-AMPARs in PVN presympathetic neurons contribute to augmented sympathetic outflow in CIH. KEY POINTS: Systemic treatment with the calcineurin inhibitor increases serine phosphorylation of synaptic GluA1 and GluA2 in the PVN. Calcineurin inhibition enhances the prevalence of postsynaptic Ca2+-permeable AMPARs in PVN presympathetic neurons. Calcineurin inhibition potentiates α2δ-1 interactions with GluA1 and GluA2, disrupting intracellular assembly of GluA1/GluA2 heterotetramers in the PVN. Blocking Ca2+-permeable AMPARs or α2δ-1-AMPAR interactions in the PVN attenuates sympathetic outflow augmented by the calcineurin inhibitor.


Asunto(s)
Calcineurina , Neuronas , Núcleo Hipotalámico Paraventricular , Ratas Sprague-Dawley , Receptores AMPA , Tacrolimus , Animales , Receptores AMPA/metabolismo , Receptores AMPA/fisiología , Calcineurina/metabolismo , Masculino , Tacrolimus/farmacología , Ratas , Neuronas/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/fisiología , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Calcio/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Inhibidores de la Calcineurina/farmacología , Sinapsis/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
8.
Neurobiol Dis ; 193: 106442, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382884

RESUMEN

Current research efforts on neurodegenerative diseases are focused on identifying novel and reliable biomarkers for early diagnosis and insight into disease progression. Salivary analysis is gaining increasing interest as a promising source of biomarkers and matrices for measuring neurodegenerative diseases. Saliva collection offers multiple advantages over the currently detected biofluids as it is easily accessible, non-invasive, and repeatable, allowing early diagnosis and timely treatment of the diseases. Here, we review the existing findings on salivary biomarkers and address the potential value in diagnosing neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Based on the available research, ß-amyloid, tau protein, α-synuclein, DJ-1, Huntington protein in saliva profiles display reliability and validity as the biomarkers of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/diagnóstico , Reproducibilidad de los Resultados , Enfermedad de Parkinson/metabolismo , Enfermedad de Huntington/diagnóstico , Biomarcadores
9.
J Hepatol ; 80(6): 858-867, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38336347

RESUMEN

BACKGROUND & AIMS: HBV expresses more than 10 spliced RNAs from the viral pregenomic RNA, but their functions remain elusive and controversial. To address the function of HBV spliced RNAs, we generated splicing-deficient HBV mutants and conducted experiments to assess the impact of these mutants on HBV infection. METHODS: HepG2-NTCP cells, human hepatocyte chimeric FRG mice (hu-FRG mice), and serum from patients with chronic hepatitis B were used for experiments on HBV infection. Additionally, SHifter assays and cryo-electron microscopy were performed. RESULTS: We found the infectivity of splicing-deficient HBV was decreased 100-1,000-fold compared with that of wild-type HBV in hu-FRG mice. Another mutant, A487C, which loses the most abundant spliced RNA (SP1), also exhibits severely impaired infectivity. SP1 hypothetically encodes a novel protein HBcSP1 (HBc-Cys) that lacks the C-terminal cysteine from full-length HBc. In the SHifter assay, HBcSP1 was detected in wild-type viral particles at a ratio of about 20-100% vs. conventional HBc, as well as in the serum of patients with chronic hepatitis B, but not in A487C particles. When infection was conducted with a shorter incubation time of 4-8 h at lower PEG concentrations in HepG2-NTCP cells, the entry of the A487C mutant was significantly slower. SP1 cDNA complementation of the A487C mutant succeeded in rescuing its infectivity in hu-FRG mice and HepG2-NTCP cells. Moreover, cryo-electron microscopy revealed a disulfide bond between HBc cysteine 183 and 48 in the HBc intradimer of the A487C capsid, leading to a locked conformation that disfavored viral entry in contrast to the wild-type capsid. CONCLUSIONS: Prior studies unveiled the potential integration of the HBc-Cys protein into the HBV capsid. We confirmed the proposal and validated its identity and function during infection. IMPACT AND IMPLICATIONS: HBV SP1 RNA encodes a novel HBc protein (HBcSP1) that lacks the C-terminal cysteine from conventional HBc (HBc-Cys). HBcSP1 was detected in cell culture-derived HBV and confirmed in patients with chronic infection by both immunological and chemical modification assays at 10-50% of capsid. The splicing-deficient mutant HBV (A487C) impaired infectivity in human hepatocyte chimeric mice and viral entry in the HepG2-NTCP cell line. Furthermore, these deficiencies of the splicing-deficient mutant could be rescued by complementation with the SP1-encoded protein HBcSP1. We confirmed and validated the identity and function of HBcSP1 during infection, building on the current model of HBV particles.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Humanos , Animales , Virus de la Hepatitis B/genética , Ratones , Células Hep G2 , Hepatitis B Crónica/virología , Empalme del ARN , Mutación , ARN Viral/genética , ARN Viral/metabolismo , Microscopía por Crioelectrón
10.
Hepatology ; 77(2): 379-394, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073601

RESUMEN

BACKGROUND AND AIMS: Both nuclear and cytoplasmic overexpression of metastatic tumor antigen 1 (MTA1) contributes to tumorigenesis of HCC. Most studies have focused on nuclear MTA1 whose function is mainly a chromatin modifier regulating the expression of various cancer-promoting genes. By contrast, the molecular mechanisms of cytoplasmic MTA1 in carcinogenesis remain elusive. Here, we reveal a role of MTA1 in posttranscriptional gene regulation. APPROACH AND RESULTS: We conducted the in vitro and in vivo RNA-protein interaction assays indicating that MTA1 could bind directly to the 3'-untranslated region of MYC RNA. Mutation at the first glycine of the conserved GXXG loop within a K-homology II domain-like structure in MTA1 (G78D) resulted in the loss of RNA-binding activity. We used gain- and loss-of-function strategy showing that MTA1, but not the G78D mutant, extended the half-life of MYC and protected it from the lethal -7-mediated degradation. The G78D mutant exhibited lower activity in promoting tumorigenesis than wild-type in vitro and in vivo. Furthermore, RNA-immunoprecipitation sequencing analysis demonstrated that MTA1 binds various oncogenesis-related mRNAs besides MYC . The clinical relevance of cytoplasmic MTA1 and its interaction with MYC were investigated using HBV-HCC cohorts with or without early recurrence. The results showed that higher cytoplasmic MTA1 level and MTA1- MYC interaction were associated with early recurrence. CONCLUSIONS: MTA1 is a generic RNA-binding protein. Cytoplasmic MTA1 and its binding to MYC is associated with early recurrence in patients with HBV-HCC. This function enables it to regulate gene expression posttranscriptionally and contributes to hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Antígenos de Neoplasias , Carcinogénesis/genética , ARN , Regulación Neoplásica de la Expresión Génica
11.
Diabetes Metab Res Rev ; 40(3): e3784, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402457

RESUMEN

AIMS: Sodium-glucose cotransporter 2 inhibitors (SGLT-2is) have been demonstrated to be associated with cancer cell mechanisms. However, whether they increase the risk of cancer remains unclear. Thus, this study aimed to determine the association between SGLT-2i use and the incidence of cancer in patients with diabetes mellitus (DM) in Taiwan. MATERIALS AND METHODS: This retrospective cohort study was based on the Taiwan National Health Insurance database. The study population comprised patients with DM, and those who first used SGLT-2is during 2016-2018 were assigned to the study group. Greedy propensity score matching was performed to select patients who first used dipeptidyl peptidase 4 inhibitors (DPP-4is), and these patients were assigned to the control group. A Cox proportional hazards model was used to estimate the adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for cancer risk in the study and control groups; this model was adjusted for demographic characteristics, DM severity, comorbidities and concomitant medication use. RESULTS: After controlling for relevant variables, the SGLT-2i cohort (aHR = 0.90, 95% CI = 0.87-0.93) had a significantly lower risk of developing cancer than the DPP-4i cohort, particularly when the SGLT-2i was dapagliflozin (aHR = 0.91, 95% CI = 0.87-0.95) or empagliflozin (aHR = 0.90, 95% CI = 0.86-0.94). Regarding cancer type, the SGLT-2i cohort's risk of cancer was significantly lower than that of the DPP-4i cohort for leukaemia, oesophageal, colorectal, liver, pancreatic, lung, skin and bladder cancer. CONCLUSIONS: SGLT-2i use was associated with a significantly lower risk of cancer than DPP-4i use.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Neoplasias , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Inhibidores de la Dipeptidil-Peptidasa IV/efectos adversos , Glucosa , Hipoglucemiantes/efectos adversos , Neoplasias/epidemiología , Neoplasias/etiología , Estudios Retrospectivos , Sodio/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos
12.
Circ Res ; 131(4): 345-360, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35862168

RESUMEN

RATIONALE: Hypertension is a common and serious adverse effect of calcineurin inhibitors, including cyclosporine and tacrolimus (FK506). Although increased sympathetic nerve discharges are associated with calcineurin inhibitor-induced hypertension, the sources of excess sympathetic outflow and underlying mechanisms remain elusive. Calcineurin (protein phosphatase-2B) is broadly expressed in the brain, including the paraventricular nuclear (PVN) of the hypothalamus, which is critically involved in regulating sympathetic vasomotor tone. OBJECTIVE: We determined whether prolonged treatment with the calcineurin inhibitor causes elevated sympathetic output and persistent hypertension by potentiating synaptic N-methyl-D-aspartate (NMDA) receptor activity in the PVN. METHODS AND RESULTS: Telemetry recordings showed that systemic administration of FK506 (3 mg/kg per day) for 14 days caused a gradual and profound increase in arterial blood pressure in rats, which lasted at least 7 days after discontinuing FK506 treatment. Correspondingly, systemic treatment with FK506 markedly reduced calcineurin activity in the PVN and circumventricular organs, but not rostral ventrolateral medulla, and increased the phosphorylation level and synaptic trafficking of NMDA receptors in the PVN. Immunocytochemistry labeling showed that calcineurin was expressed in presympathetic neurons in the PVN. Whole-cell patch-clamp recordings in brain slices revealed that treatment with FK506 increased baseline firing activity of PVN presympathetic neurons; this increase was blocked by the NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist. Also, treatment with FK506 markedly increased presynaptic and postsynaptic NMDA receptor activity of PVN presympathetic neurons. Furthermore, microinjection of the NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist into the PVN of anesthetized rats preferentially attenuated renal sympathetic nerve discharges and blood pressure elevated by FK506 treatment. In addition, systemic administration of memantine, a clinically used NMDA receptor antagonist, effectively attenuated FK506 treatment-induced hypertension in conscious rats. CONCLUSIONS: Our findings reveal that normal calcineurin activity in the PVN constitutively restricts sympathetic vasomotor tone via suppressing NMDA receptor activity, which may be targeted for treating calcineurin inhibitor-induced hypertension.


Asunto(s)
Hipertensión , Receptores de N-Metil-D-Aspartato , Animales , Presión Sanguínea , Calcineurina , Inhibidores de la Calcineurina/farmacología , Hipotálamo/metabolismo , N-Metilaspartato/farmacología , Núcleo Hipotalámico Paraventricular , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervioso Simpático , Tacrolimus/farmacología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
13.
BMC Infect Dis ; 24(1): 123, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262970

RESUMEN

BACKGROUND: Community-acquired respiratory infections are a leading cause of illness and death globally. The aetiologies of community-acquired pneumonia remain poorly defined. The RESPIRO study is an ongoing prospective observational cohort study aimed at developing pragmatic logistical and analytic platforms to accurately identify the causes of moderate-to-severe community-acquired pneumonia in adults and understand the factors influencing disease caused by individual pathogens. The study is currently underway in Singapore and has plans for expansion into the broader region. METHODS: RESPIRO is being conducted at three major tertiary hospitals in Singapore. Adults hospitalised with acute community-acquired pneumonia or lower respiratory tract infections, based on established clinical, laboratory and radiological criteria, will be recruited. Over the course of the illness, clinical data and biological samples will be collected longitudinally and stored in a biorepository for future analysis. DISCUSSION: The RESPIRO study is designed to be hypothesis generating, complementary to and easily integrated with other research projects and clinical trials. The detailed clinical database and biorepository will yield insights into the epidemiology and outcomes of community-acquired lower respiratory tract infections in Singapore and the surrounding region and offers the opportunity to deeply characterise the microbiology and immunopathology of community-acquired pneumonia.


Asunto(s)
Enfermedades Transmisibles , Neumonía , Infecciones del Sistema Respiratorio , Adulto , Humanos , Estudios Prospectivos , Evaluación de Resultado en la Atención de Salud , Estudios Observacionales como Asunto
14.
Cost Eff Resour Alloc ; 22(1): 47, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802948

RESUMEN

This survey investigates the development of day surgery in China, and analyzes the national policy support, medical service management model, disease types of day surgery, medical insurance payment methods, and the medical service capacity, efficiency, quality and safety, health economics indicators, and patient satisfaction after the implementation of day surgery in a tertiary eye hospital. After more than 20 years of development, China's day surgery has shown a good development trend. The implementation of day surgery in eye hospitals accounts for more than 70% of elective surgery, and patients, medical institutions, and medical insurance institutions have all achieved good social benefits.

15.
BMC Public Health ; 24(1): 868, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515085

RESUMEN

BACKGROUND: A population-based follow-up study assessing the risk of developing hypertension and diabetes associated with alcohol use disorder (AUD) is crucial. We investigated this relationship by using insurance claims data from Taiwan. METHODS: From the claims data, an AUD cohort (N = 60,590) diagnosed between 2000 and 2006 and a non-AUD comparison cohort (N = 60,590) without the diagnosis of hypertension or diabetes at baseline were established and matched by propensity scores estimated by baseline demographic status and the Charlson comorbidity index (CCI). We assessed the incidence rates of hypertension and/or diabetes at the end of 2016 and used Cox's method to estimate the related hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: Relative to the comparison cohort, the AUD cohort had an approximately 1.70-fold higher incidence of hypertension (35.1 vs. 20.7 per 1,000 person-years), with an adjusted HR (aHR) of 1.72 (95% CI: 1.68-1.76), 2.16-fold higher incidence of diabetes (20.2 vs. 9.36 per 1,000 person-years), with an aHR of 2.18 (95% CI: 2.11-2.24), and 1.91-fold higher incidence of both diabetes and hypertension (10.3 vs. 5.38 per 1,000 person-years) with an aHR of 2.02 (95% CI: 1.94-2.10). The incidence rates of all outcomes were greater in men than in women, whereas the HRs were greater for AUD in women than for AUD in men relative to the respective comparison patients. The risk increased further for subjects with CCI ≥ 1, which was higher in the AUD cohort. CONCLUSIONS: The increased risk of developing diabetes and hypertension in patients with AUD, especially the differences noted according to gender, indicates that clinicians should address potential comorbidities in these patients.


Asunto(s)
Alcoholismo , Diabetes Mellitus , Hipertensión , Masculino , Humanos , Femenino , Alcoholismo/epidemiología , Factores de Riesgo , Estudios de Seguimiento , Estudios Retrospectivos , Diabetes Mellitus/epidemiología , Hipertensión/epidemiología , Comorbilidad , Incidencia , Taiwán/epidemiología
16.
Ecotoxicol Environ Saf ; 270: 115873, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38150749

RESUMEN

Heavy metal(loid)s contamination prevails in the water-soil-plant system around non-ferrous metal mining areas. The present study aimed to evaluate the heavy metal(loid)s contamination in Nandan Pb-Zn mining area (Guangxi, China). A total of 36 river water samples, 75 paired paddy soil and rice samples, and 128 paired upland soil and plant samples were collected from this area. The concentrations of arsenic (As), lead (Pb), and cadmium (Cd) in these samples were measured. Results showed that the average water quality indexes (WQIs) at the 12 sampling sites along the main river ranged from 41 to 5008, indicating the water qualities decreasing from "Excellent" to "Undrinkable". The WQIs nearby tailings or industrial park were significantly higher than those at the other sites. 34.0% and 64.5% of soil samples exceeded the risk screening values for As and Cd. The Pb and Cd concentrations in all rice samples exceeded the Chinese food safety limits by 18.7% and 82.7%, respectively. Leafy vegetables had a higher concentration of As, Pb, and Cd than other vegetables, exceeding the maximum permissible limits by 14.1%, 61.2%, and 40.0%, respectively. The biological accumulation coefficient (BAC) of Cd was the highest in rice and lettuce leaves. The hazard quotients (HQs) of As and Cd, indicating non-carcinogenic risks, were 4.15 and 1.76 in adult males, and 3.40 and 1.45 in adult females, all higher than the permitted level (1.0). The carcinogenic probabilities of As and Cd from rice and leafy vegetables consumption were all higher than 1 × 10-4. We conclude that metal(loid)s contamination of the water-soil-plant system has posed great non-carcinogenic and carcinogenic risks to the local population.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Humanos , Adulto , Cadmio/análisis , Arsénico/análisis , Plomo , Suelo , Contaminantes del Suelo/análisis , China , Metales Pesados/análisis , Verduras , Minería , Medición de Riesgo , Monitoreo del Ambiente
17.
J Asian Nat Prod Res ; : 1-7, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38945155

RESUMEN

In this study, a previously undescribed cassane diterpenoid, named caesalpinin JF (1), along with two known cassane diterpenoids caesanine C (2) and tomocinol B (3), was isolated from 95% EtOH extract of the seeds of Caesalpinia sappan Linn. Additionally, three known compounds including pulcherrin R (4), syringaresinol-4'-O-ß-D-glucopyranoside (5) and kaempferol (6) were also identified. The structures of the isolated compounds were elucidated by comprehensive 1D and 2D NMR spectroscopic analyses. Additionally, electronic circular dichroism (ECD) calculation was used to identify the absolute structure of compound 1. Among the isolated compounds, compound 1 displayed a potent anti-neuroinflammation with an IC50 value of 9.87 ± 1.71 µM.

18.
J Asian Nat Prod Res ; : 1-13, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885306

RESUMEN

Three new prenylated C6-C3 compounds (1-3), together with two known prenylated C6-C3 compounds (4-5) and one known C6-C3 derivative (6), were isolated from the roots of Illicium brevistylum A. C. Smith. The structures of 1-3 were elucidated by spectroscopic methods including 1D and 2D NMR, HRESIMS, CD experiments and ECD calculations. The structure of illibrefunone A (1) was confirmed by single-crystal X-ray diffraction analysis. All compounds were evaluated in terms of their anti-inflammatory potential on nitric oxide (NO) generation in lipopolysaccharide-stimulated murine RAW264.7 macrophages and murine BV2 microglial cells, antiviral activity against Coxsackievirus B3 (CVB3) and influenza virus A/Hanfang/359/95 (H3N2). Compounds 3 and 4 exhibited potent inhibitory effects on the production of NO in RAW 264.7 cells with IC50 values of 20.57 and 12.87 µM respectively, which were greater than those of dexamethasone (positive control). Compounds 1 and 4-6 exhibited weak activity against Coxsackievirus B3, with IC50 values ranging from 25.87 to 33.33 µM.

19.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 158-163, 2024 Feb 15.
Artículo en Zh | MEDLINE | ID: mdl-38436313

RESUMEN

OBJECTIVES: To investigate the value of the human chorionic gonadotropin (hCG) stimulation test in the diagnosis of disorder of sexual development (DSD) in children. METHODS: A retrospective analysis was conducted on 132 children with DSD. According to the karyotype, they were divided into three groups: 46,XX group (n=10), 46,XY group (n=87), and sex chromosome abnormality group (n=35). The above groups were compared in terms of sex hormone levels before and after hCG stimulation test, and the morphological manifestation of the impact of testicular tissue on the results of the hCG stimulation test was analyzed. RESULTS: There was no significant difference in the multiple increase of testosterone after stimulation among the three groups (P>0.05). In the 46,XY group, the children with 5α-reductase type 2 deficiency had a testosterone-to-dihydrotestosterone ratio higher than that of the 46,XY DSD children with other causes. Morphological analysis showed that DSD children with testicular tissue demonstrated a significantly higher multiple increase in testosterone after stimulation compared to children without testicular tissue (P<0.05). CONCLUSIONS: The hCG stimulation test has an important value in assessing the presence and function of testicular interstitial cells in children with different types of DSD, and it is recommended to perform the hCG stimulation test for DSD children with unclear gonadal type.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/deficiencia , Trastorno del Desarrollo Sexual 46,XY , Hipospadias , Desarrollo Sexual , Errores Congénitos del Metabolismo Esteroideo , Testosterona , Niño , Humanos , Estudios Retrospectivos , Gonadotropina Coriónica
20.
J Neurosci ; 42(50): 9315-9329, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36379705

RESUMEN

Treatment with opioids not only inhibits nociceptive transmission but also elicits a rebound and persistent increase in primary afferent input to the spinal cord. Opioid-elicited long-term potentiation (LTP) from TRPV1-expressing primary afferents plays a major role in opioid-induced hyperalgesia and analgesic tolerance. Here, we determined whether opioid-elicited LTP involves vesicular glutamate transporter-2 (VGluT2) or vesicular GABA transporter (VGAT) neurons in the spinal dorsal horn of male and female mice and identified underlying signaling mechanisms. Spinal cord slice recordings revealed that µ-opioid receptor (MOR) stimulation with DAMGO initially inhibited dorsal root-evoked EPSCs in 87% VGluT2 neurons and subsequently induced LTP in 49% of these neurons. Repeated morphine treatment increased the prevalence of VGluT2 neurons displaying LTP with a short onset latency. In contrast, DAMGO inhibited EPSCs in 46% VGAT neurons but did not elicit LTP in any VGAT neurons even in morphine-treated mice. Spinal superficial laminae were densely innervated by MOR-containing nerve terminals and were occupied by mostly VGluT2 neurons and few VGAT neurons. Furthermore, conditional Grin1 knockout in dorsal root ganglion neurons diminished DAMGO-elicited LTP in lamina II neurons and attenuated hyperalgesia and analgesic tolerance induced by repeated treatment with morphine. In addition, DAMGO-elicited LTP in VGluT2 neurons was abolished by protein kinase C inhibition, gabapentin, Cacna2d1 knockout, or disrupting the α2δ-1-NMDA receptor interaction with an α2δ-1 C terminus peptide. Thus, brief MOR stimulation distinctively potentiates nociceptive primary afferent input to excitatory dorsal horn neurons via α2δ-1-coupled presynaptic NMDA receptors, thereby causing hyperalgesia and reducing analgesic actions of opioids.SIGNIFICANCE STATEMENT Opioid drugs are potent analgesics for treating severe pain and are commonly used during general anesthesia. However, opioid use often induces pain hypersensitivity, rapid loss of analgesic efficacy, and dose escalation, which can cause dependence, addiction, and even overdose fatality. This study demonstrates for the first time that brief opioid exposure preferentially augments primary sensory input to genetically identified glutamatergic excitatory, but not GABAergic/glycinergic inhibitory, neurons in nociceptive dorsal horn circuits. This opioid-elicited synaptic plasticity is cell type specific and mediated by protein kinase C-dependent and α2δ-1-dependent activation of NMDA receptors at primary sensory nerve terminals. These findings elucidate how intraoperative use of opioids for preemptive analgesia paradoxically aggravates postoperative pain and increases opioid consumption and suggest new strategies to improve opioid analgesic efficacy.


Asunto(s)
Analgésicos Opioides , Receptores de N-Metil-D-Aspartato , Ratas , Masculino , Femenino , Ratones , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Analgésicos Opioides/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Encefalina Ala(2)-MeFe(4)-Gli(5)/metabolismo , Ratas Sprague-Dawley , Morfina/farmacología , Morfina/metabolismo , Médula Espinal/fisiología , Neuronas/metabolismo , Proteína Quinasa C/metabolismo , Dolor/metabolismo , Neuronas Aferentes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA