RESUMEN
To bridge patients with acute liver failure to transplantation or liver regeneration, a bioartificial liver (BAL) is urgently needed. A BAL consists of an extracorporeal bioreactor loaded with a bioactive mass that would preferably be of human origin and display high hepatic functionality, including detoxification. The human hepatoma cell line HepG2 exhibits many hepatic functions, but its detoxification function is low. In this study, we investigated whether stable overexpression of pregnane X receptor (PXR), a master regulator of diverse detoxification functions in the liver [eg, cytochrome P450 3A (CYP3A) activity], would increase the potential of HepG2 for BAL application. Stable overexpression was achieved by lentiviral expression of the human PXR gene, which yielded cell line cBAL119. In monolayer cultures of cBAL119 cells, PXR transcript levels increased 29-fold versus HepG2 cells. Upon activation of PXR by rifampicin, the messenger RNA levels of CYP3A4, CYP3A5, and CYP3A7 increased 49- to 213-fold versus HepG2 cells. According to reporter gene assays with different inducers, the highest increase in CYP3A4 promoter activity (131-fold) was observed upon induction with rifampicin. Inside BALs, the proliferation rates, as measured by the DNA content, were comparable between the 2 cell lines. The rate of testosterone 6beta-hydroxylation, a measure of CYP3A function inside BALs, increased 4-fold in cBAL119 BALs versus HepG2 BALs. Other functions, such as apolipoprotein A1 synthesis, urea synthesis, glucose consumption, and lactate production, remained unchanged or increased. Thus, stable PXR overexpression markedly increases the potential of HepG2 for BAL application.
Asunto(s)
Hepatocitos/metabolismo , Hígado Artificial , Receptores de Esteroides/metabolismo , Hidrocarburo de Aril Hidroxilasas/biosíntesis , Hidrocarburo de Aril Hidroxilasas/genética , Reactores Biológicos , Proliferación Celular , Citocromo P-450 CYP3A/biosíntesis , Citocromo P-450 CYP3A/genética , Inducción Enzimática , Genes Reporteros , Vectores Genéticos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/patología , Humanos , Hidroxilación , Cinética , Lentivirus/genética , Receptor X de Pregnano , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Receptores de Esteroides/efectos de los fármacos , Receptores de Esteroides/genética , Rifampin/farmacología , Especificidad por Sustrato , Testosterona/metabolismo , Transfección , Regulación hacia ArribaRESUMEN
INTRODUCTION: Over the last few years, it has been demonstrated that a moist environment enhances the healing process and reduces scar formation of wounds. Such moist conditions can be created and maintained using hydrogels. The aim of this study was to evaluate wound healing, cooling efficacy, local tolerability, and cosmetic appearance of abrasive wounds treated with BepanGel wound care hydrogel. METHODS: This study was designed as a within-person, single-center, randomized, investigator-blind clinical investigation comparing a hydrogel-treated test field with an untreated test field in an abrasive wound model. In 33 subjects, two small superficial wounds were induced on the non-dominant forearms. Wounds were treated with BepanGel and covered with a standard semi-occlusive wound plaster or covered with a plaster alone for 11 consecutive days. Wound healing efficacy, cooling effect, and tolerability of the treatment were assessed over 12 investigational days. During follow-up at day 31, the cosmetic appearance of the wounds was evaluated. RESULTS: On day 12, the test field treated with BepanGel was completely healed in nearly all subjects (97.0%) in contrast with the test field treated with a plaster alone (18.2%, AUCdays 2-12 p < 0.0001) as assessed by a blinded investigator. Two-thirds of the unblinded subjects indicated an immediate cooling effect of the hydrogel (p = 0.0555). At the end of the investigation, the cosmetic appearance of the BepanGel-treated test fields scored superior to the fields treated with a plaster alone as evaluated by a blinded investigator (p = 0.0005) and the unblinded subjects (p = 0.0078). The hydrogel was generally well tolerated and no signs of infection or adverse events (AEs) related to the treatment were observed. CONCLUSION: This evaluation shows that treatment of superficial cutaneous wounds with BepanGel results in improved wound healing as demonstrated by faster wound closure and a considerably better cosmetic appearance, while providing immediate cooling. TRIAL REGISTRATION NUMBER: EUDAMED-No.: CIV-19-09-029744.
RESUMEN
Rapid and reliable identification of deleterious changes in the breast cancer genes BRCA1 and BRCA2 has become one of the major issues in most DNA services laboratories. To rapidly detect all possible changes within the coding and splice site determining sequences of the breast cancer genes, we established a semiautomated denaturing gradient gel electrophoresis (DGGE) mutation scanning system. All exons of both genes are covered by the DGGE scan, comprising 120 amplicons. We use a semiautomated approach, amplifying all individual amplicons with the same PCR program, after which the amplicons are pooled. DGGE is performed using three slightly different gel conditions. Validation was performed using DNA samples with known sequence variants in 107 of the 120 amplicons; all variants were detected. This DGGE mutation scanning, in combination with a PCR test for two Dutch founder deletions in BRCA1 was then applied in 431 families in which 52 deleterious changes and 70 unclassified variants were found. Fifteen unclassified variants were not reported before. The system was easily adopted by five other laboratories, where in another 3,593 families both exons 11 were analyzed by the protein truncation test (PTT) and the remaining exons by DGGE. In total, a deleterious change (nonsense, frameshift, splice-site mutation, or large deletion) was found in 661 families (16.4%), 462 in BRCA1 (11.5%), 197 in BRCA2 (4.9%), and in two index cases a deleterious change in both BRCA1 and BRCA2 was identified. Eleven deleterious changes in BRCA1 and 36 in BRCA2 had not been reported before. In conclusion, this DGGE mutation screening method for BRCA1 and BRCA2 is proven to be highly sensitive and is easy to adopt, which makes screening of large numbers of patients feasible. The results of screening of BRCA1 and BRCA2 in more than 4,000 families present a valuable overview of mutations in the Dutch population.
Asunto(s)
Neoplasias de la Mama/diagnóstico , Análisis Mutacional de ADN/métodos , Electroforesis en Gel de Poliacrilamida , Genes BRCA1 , Genes BRCA2 , Pruebas Genéticas/métodos , Neoplasias Ováricas/diagnóstico , Instituciones de Atención Ambulatoria , Femenino , Efecto Fundador , Humanos , Masculino , Países BajosRESUMEN
P-glycoprotein seems to be the most important factor limiting the oral absorption of paclitaxel. We have now explored the mechanisms responsible for the low oral bioavailability of docetaxel, a structurally related taxane drug. The recovery of 33% of oxidative metabolites and only 39% of unchanged drug in the feces of FVB wild-type mice receiving 10 mg/kg of oral docetaxel indicates that the major part of the oral dose has been absorbed. The feces and bile of mice receiving 10 mg/kg of i.v. docetaxel contained large amounts of metabolites and only minor quantities of unchanged drug, highlighting the importance of metabolism as an elimination route for this drug. In wild-type and P-glycoprotein knockout mice, dose escalation of p.o. administered docetaxel from 10 to 30 mg/kg resulted in a more than proportional increase in plasma levels, which suggested saturation of first-pass metabolism. Moreover, coadministration of 12.5 mg/kg of the HIV protease inhibitor ritonavir, also a strong inhibitor of cytochrome P4503A4 with only minor P-glycoprotein inhibiting properties, increased the plasma levels after oral docetaxel by 50-fold. In vitro transport studies across monolayers of LLC-PK1 cells (parental and transduced with MDR1 or Mdr1a) suggested that docetaxel is a weaker substrate for P-glycoprotein than paclitaxel is. In conclusion, docetaxel is well absorbed from the gut lumen in mice despite the presence of P-glycoprotein in the gut wall. Subsequent first-pass extraction is the most important factor determining its low bioavailability. The inhibition of docetaxel metabolism by ritonavir provides an interesting strategy to improve the systemic exposure of oral docetaxel.
Asunto(s)
Antineoplásicos Fitogénicos/farmacocinética , Paclitaxel/análogos & derivados , Paclitaxel/farmacocinética , Ritonavir/farmacología , Taxoides , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Administración Oral , Animales , Antineoplásicos Fitogénicos/sangre , Disponibilidad Biológica , Citocromo P-450 CYP3A , Sistema Enzimático del Citocromo P-450/metabolismo , Docetaxel , Sinergismo Farmacológico , Femenino , Humanos , Ratones , Ratones Noqueados , Paclitaxel/sangreRESUMEN
BACKGROUND: Various drug transporters of the ATP-binding cassette (ABC) family restrict the oral bioavailability and cellular, brain, testis, cerebrospinal fluid and fetal penetration of substrate drugs. MDRI P-glycoprotein (P-gp) has been demonstrated to transport most HIV protease inhibitors (HPI) and to reduce their oral bioavailability and lymphocyte, brain, testis and fetal penetration, possibly resulting in major limiting effects on the therapeutic efficacy of these drugs. OBJECTIVES: To investigate whether the ABC transporters MRP1, MRP2, MRP3, MRP5 and breast cancer resistance protein 1 (Bcrp1) are efficient transporters of the HPI saquinavir, ritonavir and indinavir. METHODS: Polarized epithelial non-human (canine) cell lines transduced with human or murine complementary DNA (cDNA) for each of the transporters were used to study transepithelial transport of the HPI. RESULTS: MRP2 efficiently transported saquinavir, ritonavir and indinavir and this transport could be enhanced by probenecid. Sulfinpyrazone was also able to enhance MRP2-mediated saquinavir transport. In contrast, MRP1, MRP3, MRP5, or Bcrp1 did not efficiently transport the HPI tested. CONCLUSIONS: Human MRP2 actively transports several HPI and could, based on its known and assumed tissue distribution, therefore reduce HPI oral bioavailability. It may also limit brain and fetal penetration of these drugs and increase their hepatobiliary, intestinal and renal clearance. MRP2 function and enhancement of its activity could adversely affect the therapeutic efficacy, including the pharmacological sanctuary penetration, of HPI. In vivo inhibition of MRP2 function might, therefore, improve HIV/AIDS therapy.
Asunto(s)
Inhibidores de la Proteasa del VIH/farmacocinética , Proteínas de Transporte de Membrana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/farmacología , Proteínas de Neoplasias , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/farmacología , Animales , Transporte Biológico , Línea Celular , Perros , Interacciones Farmacológicas , Resistencia a Múltiples Medicamentos , Células Epiteliales/metabolismo , Humanos , Indinavir/farmacocinética , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Ritonavir/farmacocinética , Saquinavir/farmacocinética , Transducción GenéticaRESUMEN
In contrast to primary hepatocytes, estimating carrier-mediated hepatic disposition by using a panel of single transfected cell-lines provides direct information on the contribution of the individual transporters to the net disposition. The most direct way to correct for differences in transporter abundance between cell-lines and tissue is by using absolute protein quantification. In the present study, the performance of this strategy to predict human hepatic uptake transport was investigated and compared with traditional scaling from primary human hepatocytes. Rosuvastatin was used as a model compound. The uptake activity was measured in HEK293 cell-lines stably overexpressing OATP1B1(∗)1a, OATP1B3 or OATP2B1, the major transporters involved in human hepatic uptake of rosuvastatin, or expressing OATP1B1(∗)15, associated with reduced hepatic uptake of rosuvastatin. The abundance of these transporter proteins in the outer membranes of HEK293-cells, in human primary hepatocytes and in human liver tissue was determined by LC-MS/MS. The measured activity, corrected for protein abundance and scaled to the whole liver, gave a very accurate prediction of the hepatic intrinsic clearance observed in vivo. Embedded in a PBPK model describing the hepatic disposition and enterohepatic circulation, the collective in vitro data resulted in a good explanation of the observed oral and intravenous pharmacokinetic profiles of rosuvastatin. The model allowed simulation of the effect of polymorphic variants of OATP1B1 on rosuvastatin pharmacokinetics. These results encourage a larger scale validation. This approach may facilitate prediction of drug-drug interactions, scaling of transporter processes across subpopulations (children, diseased patients), and may be extended to tissues for which primary cells may be more difficult to obtain.
Asunto(s)
Fluorobencenos/farmacocinética , Hepatocitos/metabolismo , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Anión Orgánico/metabolismo , Pirimidinas/farmacocinética , Sulfonamidas/farmacocinética , Adulto , Transporte Biológico/fisiología , Línea Celular , Interacciones Farmacológicas/fisiología , Células HEK293 , Humanos , Masculino , Rosuvastatina Cálcica , TransfecciónRESUMEN
We studied if the clinical pharmacokinetics and drug-drug interactions (DDIs) of the sulfonylurea-derivative glibenclamide can be simulated via a physiologically-based pharmacokinetic modeling approach. To this end, a glibenclamide PBPK-model was build in Simcyp using in vitro physicochemical and biotransformation data of the drug, and was subsequently optimized using plasma disappearance data observed after i.v. administration. The model was validated against data observed after glibenclamide oral dosing, including DDIs. We found that glibenclamide pharmacokinetics could be adequately modeled if next to CYP metabolism an active hepatic uptake process was assumed. This hepatic uptake process was subsequently included in the model in a non-mechanistic manner. After an oral dose of 0.875 mg predicted Cmax and AUC were 39.7 (95% CI:37.0-42.7)ng/mL and 108 (95% CI: 96.9-120)ng/mLh, respectively, which is in line with observed values of 43.6 (95% CI: 37.7-49.5)ng/mL and 133 (95% CI: 107-159)ng/mLh. For a 1.75 mg oral dose, the predicted and observed values were 82.5 (95% CI:76.6-88.9)ng/mL vs 91.1 (95% CI: 67.9-115.9) for Cmax and 224 (95% CI: 202-248) vs 324 (95% CI: 197-451)ng/mLh for AUC, respectively. The model correctly predicted a decrease in exposure after rifampicin pre-treatment. An increase in glibenclamide exposure after clarithromycin co-treatment was predicted, but the magnitude of the effect was underestimated because part of this DDI is the result of an interaction at the transporter level. Finally, the effects of glibenclamide and fluconazol co-administration were simulated. Our simulations indicated that co-administration of this potent CYP450 inhibitor will profoundly increase glibenclamide exposure, which is in line with clinical observations linking the glibenclamide-fluconazol combination to an increased risk of hypoglycemia. In conclusion, glibenclamide pharmacokinetics and its CYP-mediated DDIs can be simulated via PBPK-modeling. In addition, our data underline the relevance of modeling transporters on a full mechanistic level to further improve pharmacokinetic and DDI predictions of this sulfonylurea-derivative.
Asunto(s)
Antiinfecciosos/administración & dosificación , Gliburida/farmacocinética , Hipoglucemiantes/farmacocinética , Modelos Biológicos , Animales , Células CHO , Claritromicina/administración & dosificación , Simulación por Computador , Cricetulus , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Fluconazol/administración & dosificación , Gliburida/administración & dosificación , Gliburida/sangre , Células HEK293 , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/sangre , Rifampin/administración & dosificaciónRESUMEN
UNLABELLED: Hepatic transport of (99m)Tc-mebrofenin through organic anion transport protein 1a and 1b (Oatp1a/1b) and multidrug resistance protein 2 (Mrp2) was investigated by small-animal SPECT. On the basis of the results, a noninvasive method to visualize and quantify disturbances in hepatic transport is proposed. METHODS: Friend virus B wild-type mice (untreated, bile duct-ligated, vehicle- or rifampicin-treated) and strain-matched knockout mice unable to express the uptake transporters Oatp1a/1b (Slco1a/1b(-/-)/(-/-)) or the efflux transporter Mrp2 (Abcc2(-/-)) were intravenously injected with (99m)Tc-mebrofenin (n = 3 per group). After dynamic small-animal SPECT and short CT acquisitions, time-activity curves of the liver and of the gallbladder and intestines were obtained and correlated with direct blood samples. RESULTS: Normal hepatobiliary clearance of (99m)Tc-mebrofenin was severely impaired in the bile duct-ligated animal, as evidenced by elevated hepatic tracer levels. In Slco1a/1b(-/-)/(-/-) mice, a lower area under the curve (AUC) for the liver (P = 0.014) was obtained and no activity was detected in the gallbladder and intestines. Renal rerouting was observed, along with an increase in the blood AUC (P = 0.01). Abcc2(-/-) mice had a higher liver AUC (P = 0.009), a delayed emergence time of (99m)Tc-mebrofenin in the gallbladder (P = 0.009), and a lower AUC for the gallbladder and intestines (P = 0.001). The blood curve was similar to that of wild-type mice. (99m)Tc-mebrofenin disposition was altered after rifampicin treatments. We observed a dose-dependent delayed time point at which tracer maximized in liver, an increased AUC for liver, and a lower AUC for gallbladder and intestines (P = 0.042, 0.034, and 0.001, respectively, highest dose). Emergence in the gallbladder occurred later (P = 0.009, highest dose), and blood AUC was higher (P = 0.006). CONCLUSION: The current study visualized and quantified hepatic uptake and biliary efflux of (99m)Tc-mebrofenin. Our results demonstrated the possibility of discriminating, on a quantitative level, between lack of functional activity of sinusoidal uptake versus that of biliary efflux transporters.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Conductos Biliares/metabolismo , Iminoácidos/metabolismo , Hígado/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Compuestos de Organotecnecio/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Compuestos de Anilina , Animales , Conductos Biliares/efectos de los fármacos , Conductos Biliares/cirugía , Transporte Biológico/efectos de los fármacos , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Femenino , Glicina , Ligadura , Hígado/diagnóstico por imagen , Hígado/efectos de los fármacos , Ratones , Transportador 1 de Catión Orgánico/metabolismo , Rifampin/farmacología , Miembro 4 de la Subfamilia B de Casete de Unión a ATPRESUMEN
Na(+)-dependent taurocholate cotransporting polypeptide (NTCP, SLC10A1) is the main transporter facilitating the hepatic uptake of bile acids from the circulation. Consequently, the interaction of xenobiotics, including therapeutic drugs, with the bile acid binding pocket of NTCP could lead to impairment of hepatic bile acid uptake. We pursued a 3D-pharmacophore approach to model the NTCP substrate and inhibitor specificity and investigated whether it is possible to identify compounds with intrinsic NTCP inhibitory properties. Based on known endogenous NTCP substrates, a 3D-pharmacophore model was built, which was subsequently used to screen two virtual libraries together containing the structures of 10 million compounds. Studies with Chinese hamster ovary cells overexpressing human NTCP, human hepatocytes, ex vivo perfused rat livers, and bile duct-cannulated rats were conducted to validate the activity of the virtual screening hits. Modeling yielded a 3D-pharmacophore, consisting of two hydrogen bond acceptors and three hydrophobic features. Six out of 10 structurally diverse compounds selected in the first virtual screening procedure significantly inhibited taurocholate uptake in the NTCP overexpressing cells. For the most potent inhibitor identified, an anthraquinone derivative, this finding was confirmed in human hepatocytes and perfused rat livers. Subsequent structure and activity relationship studies with analogs of this derivative indicated that an appropriate distance between hydrogen bond acceptor features and presence of one or two negative charges appear critical for a successful NTCP interaction. In conclusion, pharmacophore modeling was successfully used to identify compounds that inhibit NTCP. Our approach represents an important first step toward the in silico flagging of potential cholestasis-inducing molecules.
Asunto(s)
Colestasis/inducido químicamente , Modelos Biológicos , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Péptidos/metabolismo , Ácido Taurocólico/metabolismo , Animales , Células CHO , Simulación por Computador , Cricetinae , Cricetulus , Humanos , Masculino , Transportadores de Anión Orgánico Sodio-Dependiente/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
It has been reported that polymorphisms in the organic anion transporting polypeptide 1B1 (OATP1B1, SLCO1B1) result in decreased hepatic uptake of simvastatin carboxy acid, the active metabolite of simvastatin. This is not the case for fluvastatin and it has been hypothesized that for this drug other hepatic uptake pathways exist. Here, we studied whether Na(+)-dependent taurocholate co-transporting polypeptide (NTCP, SLC10A1) can be an alternative hepatic uptake route for fluvastatin. Chinese Hamster Ovary cells transfected with human NTCP (CHO-NTCP) were used to investigate the inhibitory effect of fluvastatin and other statins on [(3)H]-taurocholic acid uptake ([(3)H]-TCA). Statin uptake by CHO-NTCP and cryopreserved human hepatocytes was assessed via LC-MS/MS. Fluvastatin appeared to be a potent and competitive inhibitor of [(3)H]-TCA uptake (IC(50) of 40µM), pointing to an interaction at the level of the bile acid binding pocket of NTCP. The inhibitory action of other statins was also studied, which revealed that statin inhibitory potency increased with molecular descriptors of lipophilicity: calculated logP (r(2)=0.82, p=0.034), logD(7.4) (r(2)=0.77, p=0.0001). Studies in CHO-NTCP cells showed that fluvastatin was indeed an NTCP substrate (K(m) 250±30µM, V(max) 1340±50ng/mg total cell protein/min). However, subsequent studies revealed that at clinically relevant plasma concentrations, NTCP contributed minimally to overall accumulation in human hepatocytes. In conclusion, fluvastatin interacts with NTCP at the level of the bile acid binding pocket and is an NTCP substrate. However, under normal conditions, NTCP-mediated uptake of this drug seems not to be a significant hepatocellular uptake pathway.
Asunto(s)
Ácidos Grasos Monoinsaturados/metabolismo , Indoles/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo , Animales , Unión Competitiva , Transporte Biológico/efectos de los fármacos , Células CHO , Células Cultivadas , Cricetinae , Estradiol/análogos & derivados , Estradiol/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Fluvastatina , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Indoles/farmacología , Concentración 50 Inhibidora , Cinética , Transportador 1 de Anión Orgánico Específico del Hígado , Estructura Molecular , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Rifampin/farmacología , Simvastatina/metabolismo , Simvastatina/farmacología , Sodio/deficiencia , Sodio/metabolismo , Simportadores/genética , Ácido Taurocólico/metabolismo , TransfecciónRESUMEN
ATP binding cassette (ABC) multidrug transporters such as P-glycoprotein (P-gp, ABCB1) and BCRP (ABCG2) confer resistance against anticancer drugs and can limit their oral availability, thus contributing to failure of chemotherapy. Like P-gp and BCRP, another ABC transporter, MRP2 (ABCC2), is found in apical membranes of pharmacologically important epithelial barriers and in a variety of tumors. MRP2 transports several anticancer drugs and might thus have a similar impact on chemotherapy as P-gp and BCRP. We here show that human MRP2 transduced into epithelial MDCKII cells efficiently transported the taxane anticancer drugs paclitaxel and docetaxel and that this transport could be substantially stimulated with the drug probenecid, a representative of a range of MRP2-stimulating drugs. Transport of 2 previously identified MRP2 substrates, etoposide and vinblastine, was likewise stimulated by probenecid. MRP2 further conferred substantial resistance against paclitaxel toxicity, and this resistance was 2.7-fold stimulated by probenecid. Our data indicate that MRP2 function might affect chemotherapy with taxanes, potentially influencing both tumor resistance and taxane pharmacokinetics. Moreover, coadministration of probenecid and other MRP2-stimulating drugs might lead to unforeseen drug-drug interactions by stimulating MRP2 function, potentially leading to suboptimal levels of taxanes and other anticancer drugs in plasma and tumor.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Resistencia a Antineoplásicos , Proteínas de Transporte de Membrana/fisiología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/fisiología , Paclitaxel/farmacología , Probenecid/farmacología , Animales , Transporte Biológico , Línea Celular , Docetaxel , Perros , Relación Dosis-Respuesta a Droga , Etopósido/farmacocinética , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Probenecid/farmacocinética , Taxoides/farmacocinética , Vinblastina/farmacocinéticaRESUMEN
Using a mouse model, we tested the effects of in vivo P-glycoprotein inhibition to enhance the oral uptake and penetration into pharmacological sanctuary sites of the human immunodeficiency virus protease inhibitor (HPI) saquinavir. The HPI ritonavir is frequently coadministered with saquinavir to improve saquinavir plasma levels since it strongly reduces the cytochrome P450 3A4-mediated metabolism of saquinavir. Previously, we demonstrated that ritonavir is not an efficient P-glycoprotein inhibitor in vivo, evidenced by the limited oral uptake of saquinavir and its penetration into brain and fetus. Increasing drug concentrations in these sites using more effective P-gp inhibitors might improve therapy but could also lead to toxicity. We orally coadministered ritonavir and saquinavir to mice, with or without the potent P-glycoprotein inhibitor N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918). Upon GF120918 coadministration, two of seven P-glycoprotein-deficient animals died. Using a decreased ritonavir dose, GF120918 coadministration led to a 4.4-fold increase in the saquinavir plasma area under the curve in wild-type mice, whereas no such effect was observed in P-glycoprotein-deficient mice. Despite the decreased ritonavir dose, all mice did suffer from impaired gastric emptying. Including GF120918 in a multiple (twice daily) dosing regimen, we found continued accumulation of saquinavir in brain over several days, resulting in 10-fold higher levels compared with vehicle-treated mice. Transient ritonavir-related neurotoxicity, however, was observed after the fourth and final drug dosing. Clinical attempts to efficiently inhibit P-glycoprotein function for improved HPI disposition may therefore be feasible, but they should be performed without ritonavir and monitored carefully for unexpected toxicities.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Ritonavir/efectos adversos , Ritonavir/farmacocinética , Saquinavir/efectos adversos , Saquinavir/farmacocinética , Tetrahidroisoquinolinas , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/deficiencia , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/genética , Acridinas/farmacología , Animales , Quimioterapia Combinada , Femenino , Isoquinolinas/farmacología , Masculino , Ratones , Ratones Noqueados , EmbarazoRESUMEN
Multidrug resistance protein 2 (MRP2) belongs to the ATP binding cassette family of transporters. Its substrates include organic anions and anticancer drugs. We have used transport assays with vesicles derived from Sf9 insect cells overproducing MRP2 to study the interactions of drugs, organic anions, and bile acids with three MRP2 substrates: estradiol-17-beta-d-glucuronide (E217betaG), methotrexate, and glutathione-S-dinitrophenol. Complex inhibition and stimulation patterns were obtained, different from those observed with the related transporters MRP1 and MRP3. In contrast to a previous report, we found that the rate of E217betaG transport by MRP2 increases sigmoidally with substrate concentration indicative of homotropic cooperativity. Half-maximal transport was obtained at 120 microm E217betaG, in contrast to values < 20 microm for MRP1 and 3. MRP2 stimulators, such as indomethacin and sulfanitran, strongly increased the affinity of MRP2 for E217betaG (half-maximal transport rates at 65 and 16 microm E217betaG, respectively) and shifted the sigmoidal dependence of transport rate on substrate concentration to a more hyperbolic one, without substantially affecting the maximal transport rate. Sulfanitran also stimulated MRP2 activity in cells, i.e. the transport of saquinavir through monolayers of Madin-Darby canine kidney II cells. Some compounds that stimulate E217betaG transport, such as penicillin G or pantoprazole, are not detectably transported by MRP2, suggesting that they allosterically stimulate transport without being cotransported with E217betaG. We propose that MRP2 contains two similar but nonidentical ligand binding sites: one site from which substrate is transported and a second site that regulates the affinity of the transport site for the substrate.