RESUMEN
The Quantum cell expansion system manufactured by Terumo-BCT is perhaps the most widely reported Good Manufacturing Practice-compliant bioreactor used for the expansion of adherent cell populations, both for research purposes and clinical cell-based therapies/trials. Although the system was originally designed for adherent cell expansion, more recently suspension cultures and extracellular vesicle manufacturing protocols have been published using the Quantum system. Cell therapy research and regenerative medicine in general is a rapidly expanding field and as such it is likely that the use of this system will become even more widespread and perhaps mandatory, for both research and development and in the clinic. The purpose of this review is to describe, compare and discuss the diverse range of research and clinical applications currently using the Quantum system, which to our knowledge has not previously been reviewed. In addition, current and future challenges will also be discussed.
Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Mesenquimatosas , Técnicas de Cultivo de Célula/métodos , Reactores Biológicos , Tratamiento Basado en Trasplante de Células y Tejidos , Proliferación CelularRESUMEN
STUDY DESIGN: Explanatory and mechanistic study. OBJECTIVES: A better understanding of the 'whole-body' response following spinal cord injury (SCI) is needed to guide future research aimed at developing novel therapeutic interventions and identifying prognostic indicators for SCI. This study aimed to characterise the blood proteome following contusion or complete SCI compared to a sham injury in rat models. SETTING: United Kingdom. METHODS: Pooled blood samples from one and seven days after a contusion (serum; n = 5) or from 14 days and 112 days post-complete transection SCI (plasma; n = 8) and their sham-injured counterparts were subjected to independent iTRAQ nanoflow liquid chromatography tandem mass-spectrometry proteomic analyses. Pathway analyses of the proteins that were differentially abundant between SCI and their matched sham injured counterparts were completed to indicate biological pathways that may be changed in response to SCI. RESULTS: Eleven and 42 proteins were differentially abundant (≥±2.0 FC; p ≤ 0.05) between the contusion SCI and sham injured animals at 24 h and seven days post-injury, respectively. Seven and tweleve proteins were differentially abundant between complete and sham injured rats at 14 and 112 days post-injury, respectively. Acute-phase response signalling and Liver X Receptor/Retinoic X Receptor activation were identified as differentially regulated pathways in both models of SCI. CONCLUSIONS: We have utilised longitudinal preclinical SCI models to provide an insight into the blood proteome changes that result following SCI and to highlight a number of biological pathways of interest for future studies.
Asunto(s)
Contusiones , Proteoma , Traumatismos de la Médula Espinal , Animales , Contusiones/sangre , Proteómica/métodos , Ratas , Médula Espinal , Traumatismos de la Médula Espinal/sangreRESUMEN
BACKGROUND: Stratification is required to ensure that only patients likely to benefit receive autologous chondrocyte implantation (ACI). It would be advantageous to identify biomarkers to predict ACI outcome that are measurable in blood, avoiding the need for an invasive synovial fluid harvest. PURPOSE: To assess if proteomic analyses can be used to identify novel candidate blood biomarkers in individuals who respond well or poorly to ACI. STUDY DESIGN: Controlled laboratory study. METHODS: Isobaric tagging for relative and absolute quantitation (iTRAQ) mass spectrometry was used to assess the proteome in plasma pooled from ACI responders (mean Lysholm improvement after ACI, 33; n = 10) or nonresponders (mean, -13; n = 10), collected at the time of surgery for cartilage harvest (stage 1) or implantation of culture-expanded chondrocytes (stage 2). An alternative proteomic method, label-free quantitation liquid chromatography-tandem mass spectrometry, was used to analyze plasma samples (majority matched to iTRAQ) individually. Differentially abundant proteins (±2.0-fold) were analyzed from both proteomic data sets, and markers of interest identified via pooled iTRAQ were validated via immunoassay of individual samples. RESULTS: Protein differences could be detected in the plasma preoperatively between ACI responders and nonresponders (16 proteins; ≥±2.0-fold change; P < .05) using iTRAQ proteomics. The most pronounced plasma proteome shift was evident in response to stage 1 surgery in ACI nonresponders, with 48 proteins being differentially abundant between the procedures. Label-free quantitation liquid chromatography-tandem mass spectrometry analysis of these same plasma samples (nonpooled) resulted in very few proteins being identified that were significantly differentially abundant. However, this work highlighted cartilage acidic protein 1 as being increased preoperatively in nonresponders as compared with responders. CONCLUSIONS: This study is the first to use proteomic techniques to profile the plasma of individuals treated with ACI. Despite iTRAQ analysis of pooled plasmas indicating that there are differences in the plasma proteome between responders and nonresponders to ACI, these findings were not replicated when assessed using an alternative nonpooled technique. This study highlights some of the difficulties in profiling the plasma proteome in an attempt to identify novel biomarkers. Regardless, cartilage acidic protein 1 has been identified as a protein candidate, which is detectable in plasma and can predict outcome to ACI before treatment. CLINICAL RELEVANCE: Candidate plasma protein biomarkers identified in this study have the potential to help determine which patients will be best suited to treatment with ACI.
Asunto(s)
Cartílago Articular , Condrocitos , Humanos , Biomarcadores/metabolismo , Cartílago Articular/cirugía , Cartílago Articular/metabolismo , Condrocitos/trasplante , Articulación de la Rodilla/cirugía , Proteoma , Proteómica/métodos , Trasplante Autólogo/métodosRESUMEN
Allogeneic chondrocyte therapies need to be developed to allow more individuals to be treated with a cell therapy for cartilage repair and to reduce the burden and cost of the current two-stage autologous procedures. Upscale manufacture of chondrocytes using a bioreactor could help provide an off-the-shelf allogeneic chondrocyte therapy with many doses being produced in a single manufacturing run. In this study, we assess a good manufacturing practice-compliant hollow-fiber bioreactor (Quantum®) for adult chondrocyte manufacture. Chondrocytes were isolated from knee arthroplasty-derived cartilage (n = 5) and expanded in media supplemented with 10% fetal bovine serum (FBS) or 5% human platelet lysate (hPL) on tissue culture plastic (TCP) for a single passage. hPL-supplemented cultures were then expanded in the Quantum bioreactor for a further passage. Matched, parallel cultures in hPL or FBS were maintained on TCP. Chondrocytes from all culture conditions were characterized in terms of growth kinetics, morphology, immunoprofile, chondrogenic potential (chondrocyte pellet assays), and single telomere length analysis. Quantum expansion of chondrocytes resulted in 86.4 ± 38.5 × 106 cells in 8.4 ± 1.5 days, following seeding of 10.2 ± 3.6 × 106 cells. This related to 3.0 ± 1.0 population doublings in the Quantum bioreactor, compared with 2.1 ± 0.6 and 1.3 ± 1.0 on TCP in hPL- and FBS-supplemented media, respectively. Quantum- and TCP-expanded cultures retained equivalent chondropotency and mesenchymal stromal cell marker immunoprofiles, with only the integrin marker, CD49a, decreasing following Quantum expansion. Quantum-expanded chondrocytes demonstrated equivalent chondrogenic potential (as assessed by ability to form and maintain chondrogenic pellets) with matched hPL TCP populations. hPL manufacture, however, led to reduced chondrogenic potential and increased cell surface positivity of integrins CD49b, CD49c, and CD51/61 compared with FBS cultures. Quantum expansion of chondrocytes did not result in shortened 17p telomere length when compared with matched TCP cultures. This study demonstrates that large numbers of adult chondrocytes can be manufactured in the Quantum hollow-fiber bioreactor. This rapid, upscale expansion does not alter chondrocyte phenotype when compared with matched TCP expansion. Therefore, the Quantum provides an attractive method of manufacturing chondrocytes for clinical use. Media supplementation with hPL for chondrocyte expansion may, however, be unfavorable in terms of retaining chondrogenic capacity.
Asunto(s)
Condrocitos , Trasplante de Células Madre Hematopoyéticas , Adulto , Humanos , Cartílago , Células Cultivadas , Matriz Extracelular/metabolismo , Diferenciación Celular , Proliferación CelularRESUMEN
Osteochondral lesions of the talus (OLTs) are a common complication following trauma, involving both the articular cartilage and the underlying subchondral bone, with variable aetiologies and often presenting with non-specific symptoms. Diagnosis of OLTs requires a combination of clinical assessment and imaging and despite many different treatment options, there is no generalised consensus regarding which option is the most effective. Left untreated, OLTs risk progressing to osteoarthritis. Acute non-displaced OLTs can be treated non-operatively. However, OLTs refractory to non-surgical care for three to six months may be suitable for surgical care. In these cases, conservative treatments are often unsuccessful, particularly for larger and more severe defects and so the majority require surgical intervention. Although bone marrow stimulation techniques remain the "gold standard" for lesions <150 mm2, there still requires a need for better long term clinical data and cost-benefit analyses compared with other treatment options. Biological attempts at either regenerating or replacing the articular cartilage are however demonstrating some promising results, but each with their own advantages and disadvantages. In this review, we summarise the clinical management of OLTs and present the current concepts of different treatment regimes.
RESUMEN
Regenerative medicine, using cells as therapeutic agents for the repair or regeneration of tissues and organs, offers great hope for the future of medicine. Cell therapy for treating defects in articular cartilage has been an exemplar of translating this technology to the clinic, but it is not without its challenges. These include applying regulations, which were designed for pharmaceutical agents, to living cells. In addition, using autologous cells as the therapeutic agent brings additional costs and logistical challenges compared with using allogeneic cells. The main cell types used in treating chondral or osteochondral defects in joints to date are chondrocytes and mesenchymal stromal cells derived from various sources such as bone marrow, adipose tissue or umbilical cord. This review discusses some of their biology and pre-clinical studies before describing the most pertinent clinical trials in this area.
Asunto(s)
Cartílago Articular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Tratamiento Basado en Trasplante de Células y Tejidos , Ingeniería de TejidosRESUMEN
BACKGROUND: Biomarkers are needed to predict clinical outcomes for microfracture and osteotomy surgeries to ensure patients can be better stratified to receive the most appropriate treatment. PURPOSE: To identify novel biomarker candidates and to investigate the potential of a panel of protein biomarkers for the prediction of clinical outcome after treatment with microfracture or osteotomy. STUDY DESIGN: Descriptive laboratory study. METHODS: To identify novel candidate biomarker proteins, we used label-free quantitation after liquid chromatography-tandem mass spectrometry of dynamic range-compressed synovial fluids (SFs) from individuals who responded excellently or poorly (based on change in Lysholm score) to microfracture (n = 6) or osteotomy (n = 7). Biomarkers that were identified in this proteomic analysis or that relate to osteoarthritis (OA) severity or have predictive value in another early OA therapy (autologous cell implantation) were measured in the SF of 19 and 13 patients before microfracture or osteotomy, respectively, using commercial immunoassays, and were normalized to urea. These were aggrecanase-1 (ADAMTS-4), cartilage oligomeric matrix protein (COMP), hyaluronan (HA), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), matrix metalloproteinase 1 and 3, soluble CD14, S100 calcium binding protein A13, and 14-3-3 protein theta (YWHAQ). Levels of COMP and HA were also measured in the plasma of these patients. To find predictors of postoperative function, multivariable regression analyses were performed. RESULTS: Proteomic analyses highlighted YWHAQ and LYVE-1 as being differentially abundant between the clinical responders/improvers and nonresponders after microfracture. A linear regression model after backward variable selection could relate preoperative concentrations of SF proteins (HA, YWHAQ, LYVE-1), activity of ADAMTS-4, and patient demographic characteristics (smoker status and sex) with Lysholm score 12 months after microfracture. Further, a generalized linear model with elastic net penalization indicated that lower preoperative activity of ADAMTS-4 in SF, being a nonsmoker, and being younger at the time of operation were indicative of a higher postoperative Lysholm score (improved joint function) after osteotomy surgery. CONCLUSION: We have identified biomarkers and generated regression models with the potential to predict clinical outcome in patients treated with microfracture or osteotomy of the knee. CLINICAL RELEVANCE: Candidate protein biomarkers identified in this study have the potential to help determine which patients will be best suited to treatment with microfracture or osteotomy.
Asunto(s)
Fracturas por Estrés , Osteoartritis de la Rodilla , Biomarcadores , Humanos , Articulación de la Rodilla , Osteotomía , Proteómica , Líquido SinovialRESUMEN
A questionnaire was developed to evaluate patients' perspective on research aimed at improving functions and overcoming complications associated with spinal cord injury (SCI). The first three sections were based on published and validated assessment tools. The final section was developed to assess participant perspectives on research for SCI. One thousand patients were approached, of which 159 participated. Fifty-eight percent of participants were satisfied with their 'life as a whole'. Two factors could be generated that reflected the variance in the data regarding participants' life with a SCI: "Psychosocial and physical wellbeing" and "Independent living". The majority of participants stated they would be involved in research (86%) or clinical trials (77%). However, the likelihood of participation dropped when potential risks of the research/trials were explained. Which participants would be willing to participate in research could not be predicted based on the severity of their injury, their psychosocial and physical wellbeing or their independent living. Despite participant establishment of a life with SCI, our data indicates that individuals strive for improvements in function. Participant willingness to be included in research studies is noteworthy and scientists and clinicians are encouraged to involve more patients in all aspects of their research.
Asunto(s)
Participación del Paciente/psicología , Traumatismos de la Médula Espinal/psicología , Encuestas y Cuestionarios/normas , Adulto , Anciano , Anciano de 80 o más Años , Investigación Biomédica , Ensayos Clínicos como Asunto/psicología , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
There is increasing interest in the identification of biomarkers that could predict neurological outcome following a spinal cord injury (SCI). Although initial American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade is a good indicator of neurological outcome, for the patient and clinicians, an element of uncertainty remains. This preliminary study aimed to assess the additive potential of routine blood analytes following principal component analysis (PCA) to develop prognostic models for neurological outcome following SCI. Routine blood and clinical data were collected from SCI patients (n = 82) and PCA used to reduce the number of blood analytes into related factors. Outcome neurology was obtained from AIS scores at 3 and 12 months post-injury, with motor (AIS and total including all myotomes) and sensory (AIS, touch and pain) abilities being assessed individually. Multiple regression models were created for all outcome measures. Blood analytes relating to "liver function" and "acute inflammation and liver function" factors were found to significantly increase prediction of neurological outcome at both 3 months (touch, pain, and AIS sensory) and at 1 year (pain, R2 increased by 0.025 and total motor, R2 increased by 0.016). For some models "liver function" and "acute inflammation and liver function" factors were both significantly predictive, with the greatest combined R2 improvement of 0.043 occurring for 3 month pain prediction. These preliminary findings support ongoing research into the use of routine blood analytes in the prediction of neurological outcome in SCI patients.
Asunto(s)
Pruebas Hematológicas/tendencias , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/sangre , Traumatismos de la Médula Espinal/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Estudios de Cohortes , Estudios de Seguimiento , Pruebas Hematológicas/métodos , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Traumatismos de la Médula Espinal/fisiopatología , Resultado del Tratamiento , Adulto JovenRESUMEN
Diabetes mellitus (DM) during pregnancy can result in fetal overgrowth, likely due to placental dysfunction, which has health consequences for the infant. Here we test our prediction from previous work using a placental cell line that high glucose concentrations affect placental lipid metabolism. Placentas from women with type 1 (n = 13), type 2 (n = 6) or gestational (n = 12) DM, BMI-matched to mothers without DM (n = 18), were analysed for lipase and fatty acid transport proteins and fatty acid and triglyceride content. Explants from uncomplicated pregnancies (n = 6) cultured in physiological or high glucose were similarly analysed. High glucose levels did not alter placental lipase or transporter expression or the profile and abundance of fatty acids, but triglyceride levels were higher (p < 0.05), suggesting reduced ß- oxidation. DM did not affect placental protein expression or fatty acid profile. Triglyceride levels of placentas from mothers with pre-existing DM were similar to controls, but higher in obese women with gestational DM. Maternal hyperglycemia may not affect placental fatty acid uptake and transport. However, placental ß-oxidation is affected by high glucose and reduced in a subset of women with DM. Abnormal placental lipid metabolism could contribute to increased maternal-fetal lipid transfer and excess fetal growth in some DM pregnancies.
Asunto(s)
Glucosa/metabolismo , Metabolismo de los Lípidos/fisiología , Placenta/metabolismo , Adulto , Peso al Nacer/fisiología , Diabetes Gestacional/metabolismo , Ácidos Grasos/metabolismo , Femenino , Feto/metabolismo , Humanos , Lipoproteína Lipasa/metabolismo , Obesidad/metabolismo , Oxidación-Reducción , Embarazo , Embarazo en Diabéticas/metabolismo , Triglicéridos/metabolismo , Adulto JovenRESUMEN
BACKGROUND: Autologous chondrocyte implantation (ACI) has a failure rate of approximately 20%, but it is yet to be fully understood why. Biomarkers are needed that can pre-operatively predict in which patients it is likely to fail, so that alternative or individualised therapies can be offered. We previously used label-free quantitation (LF) with a dynamic range compression proteomic approach to assess the synovial fluid (SF) of ACI responders and non-responders. However, we were able to identify only a few differentially abundant proteins at baseline. In the present study, we built upon these previous findings by assessing higher-abundance proteins within this SF, providing a more global proteomic analysis on the basis of which more of the biology underlying ACI success or failure can be understood. METHODS: Isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic analysis was used to assess SF from ACI responders (mean Lysholm improvement of 33; n = 14) and non-responders (mean Lysholm decrease of 14; n = 13) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Differentially abundant proteins in iTRAQ and combined iTRAQ and LF datasets were investigated using pathway and network analyses. RESULTS: iTRAQ proteomic analysis confirmed our previous finding that there is a marked proteomic shift in response to cartilage harvest (70 and 54 proteins demonstrating ≥ 2.0-fold change and p < 0.05 between stages I and II in responders and non-responders, respectively). Further, it highlighted 28 proteins that were differentially abundant between responders and non-responders to ACI, which were not found in the LF study, 16 of which were altered at baseline. The differential expression of two proteins (complement C1s subcomponent and matrix metalloproteinase 3) was confirmed biochemically. Combination of the iTRAQ and LF proteomic datasets generated in-depth SF proteome information that was used to generate interactome networks representing ACI success or failure. Functional pathways that are dysregulated in ACI non-responders were identified, including acute-phase response signalling. CONCLUSIONS: Several candidate biomarkers for baseline prediction of ACI outcome were identified. A holistic overview of the SF proteome in responders and non-responders to ACI has been profiled, providing a better understanding of the biological pathways underlying clinical outcome, particularly the differential response to cartilage harvest in non-responders.
Asunto(s)
Condrocitos/trasplante , Proteoma/metabolismo , Proteómica/métodos , Líquido Sinovial/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Mapas de Interacción de Proteínas , Trasplante Autólogo , Adulto JovenRESUMEN
BACKGROUND: Autologous chondrocyte implantation (ACI) can be used in the treatment of focal cartilage injuries to prevent the onset of osteoarthritis (OA). However, we are yet to understand fully why some individuals do not respond well to this intervention. Identification of a reliable and accurate biomarker panel that can predict which patients are likely to respond well to ACI is needed in order to assign the patient to the most appropriate therapy. This study aimed to compare the baseline and mid-treatment proteomic profiles of synovial fluids (SFs) obtained from responders and non-responders to ACI. METHODS: SFs were derived from 14 ACI responders (mean Lysholm improvement of 33 (17-54)) and 13 non-responders (mean Lysholm decrease of 14 (4-46)) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Label-free proteome profiling of dynamically compressed SFs was used to identify predictive markers of ACI success or failure and to investigate the biological pathways involved in the clinical response to ACI. RESULTS: Only 1 protein displayed a ≥2.0-fold differential abundance in the preclinical SF of ACI responders versus non-responders. However, there is a marked difference between these two groups with regard to their proteome shift in response to cartilage harvest, with 24 and 92 proteins showing ≥2.0-fold differential abundance between Stages I and II in responders and non-responders, respectively. Proteomic data has been uploaded to ProteomeXchange (identifier: PXD005220). We have validated two biologically relevant protein changes associated with this response, demonstrating that matrix metalloproteinase 1 was prominently elevated and S100 calcium binding protein A13 was reduced in response to cartilage harvest in non-responders. CONCLUSIONS: The differential proteomic response to cartilage harvest noted in responders versus non-responders is completely novel. Our analyses suggest several pathways which appear to be altered in non-responders that are worthy of further investigation to elucidate the mechanisms of ACI failure. These protein changes highlight many putative biomarkers that may have potential for prediction of ACI treatment success.
Asunto(s)
Enfermedades de los Cartílagos/diagnóstico , Enfermedades de los Cartílagos/terapia , Condrocitos/trasplante , Escala de Puntuación de Rodilla de Lysholm , Proteómica/métodos , Líquido Sinovial , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades de los Cartílagos/genética , Condrocitos/fisiología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mapas de Interacción de Proteínas/fisiología , Proteómica/tendencias , Líquido Sinovial/fisiología , Trasplante Autólogo/métodos , Trasplante Autólogo/tendencias , Resultado del Tratamiento , Adulto JovenRESUMEN
Fetal growth restriction (FGR) is a serious pregnancy complication associated with increased perinatal mortality and morbidity. Although the majority of cases with FGR result from placental dysfunction, the pathophysiology is incompletely understood. Autophagy is a physiological form of cell degradation exacerbated by nutrient and oxygen restriction, which are both thought to play a role in the aetiology of FGR. We hypothesized that autophagy is present in the normal human placenta and is exaggerated in FGR. Autophagy was assessed in electron micrographs from normal and FGR placentas and by Western blotting for LC3B and LAMP-2. The localization of regulators of autophagy was examined by immunohistochemistry. Culture of BeWo cells was used to investigate whether nutrient and/or oxygen deprivation can induce autophagy in trophoblast. Autophagy predominantly localized to the syncytiotrophoblast layer and autophagosomes were more frequent in FGR. The regulators LAMP-2, LC3B, Beclin-1, ATG 5, ATG9 and ATG16L1 were all present in villous trophoblast. LAMP-2 immunostaining was more punctate in FGR. In BeWo cells, culture in reduced oxygen tension and/or serum depleted conditions led to the appearance of autophagosomes which was associated with changes in LAMP-2 configuration. We conclude that autophagy in human term placenta may be involved in the placental dysfunction present in FGR.