Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 37(18): 3741-3, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23041844

RESUMEN

We demonstrate coherent beam combining using a two-dimensionally patterned diffractive optic combining element. Fifteen Yb-doped fiber amplifier beams arranged in a 3×5 array were combined into a single 600 W, M²=1.1 output beam with 68% combining efficiency. Combining losses under thermally stable conditions at 485 W were found to be dominated by spatial mode-mismatch between the free space input beams, in quantitative agreement with calculations using the measured amplitude and phase profiles of the input beams.

2.
Chem Sci ; 8(7): 4853-4857, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28959408

RESUMEN

Fluoride-Promoted Carbonylation (FPC) polymerization is herein presented as a novel catalytic polymerization methodology that complements ROP and unlocks a greater synthetic window to advanced polycarbonates. The overall two-step strategy is facile, robust and capitalizes on the synthesis and step-growth polymerization of bis-carbonylimidazolide and diol monomers of 1,3- or higher configurations. Cesium fluoride (CsF) is identified as an efficient catalyst and the bis-carbonylimidazolide monomers are synthesized as bench-stable white solids, easily obtained on 50-100 g scales from their parent diols using cheap commercial 1,1'-carbonyldiimidazole (CDI) as activating reagent. The FPC polymerization works well in both solution and bulk, does not require any stoichiometric additives or complex settings and produces only imidazole as a relatively low-toxicity by-product. As a proof-of-concept using only four diol building-blocks, FPC methodology enabled the synthesis of a unique library of polycarbonates covering (i) rigid, flexible and reactive PC backbones, (ii) molecular weights 5-20 kg mol-1, (iii) dispersities of 1.3-2.9 and (iv) a wide span of glass transition temperatures, from -45 up to 169 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA