Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(11): 4251-6, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591637

RESUMEN

The transcription factor E-twenty-six related gene (ERG), which is overexpressed through gene fusion with the androgen-responsive gene transmembrane protease, serine 2 (TMPRSS2) in ∼40% of prostate tumors, is a key driver of prostate carcinogenesis. Ablation of ERG would disrupt a key oncogenic transcriptional circuit and could be a promising therapeutic strategy for prostate cancer treatment. Here, we show that ubiquitin-specific peptidase 9, X-linked (USP9X), a deubiquitinase enzyme, binds ERG in VCaP prostate cancer cells expressing TMPRSS2-ERG and deubiquitinates ERG in vitro. USP9X knockdown resulted in increased levels of ubiquitinated ERG and was coupled with depletion of ERG. Treatment with the USP9X inhibitor WP1130 resulted in ERG degradation both in vivo and in vitro, impaired the expression of genes enriched in ERG and prostate cancer relevant gene signatures in microarray analyses, and inhibited growth of ERG-positive tumors in three mouse xenograft models. Thus, we identified USP9X as a potential therapeutic target in prostate cancer cells and established WP1130 as a lead compound for the development of ERG-depleting drugs.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas Oncogénicas/metabolismo , Neoplasias de la Próstata/enzimología , Inhibidores de Proteasas/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Cianoacrilatos , Células HeLa , Humanos , Masculino , Ratones , Nitrilos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Piridinas/farmacología , Interferencia de ARN , Factores de Transcripción , Regulador Transcripcional ERG , Ubiquitina Tiolesterasa , Ubiquitinación/efectos de los fármacos
2.
Cancer Discov ; 7(8): 832-851, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28455392

RESUMEN

Genomic diversity among melanoma tumors limits durable control with conventional and targeted therapies. Nevertheless, pathologic activation of the ERK1/2 pathway is a linchpin tumorigenic mechanism associated with the majority of primary and recurrent disease. Therefore, we sought to identify therapeutic targets that are selectively required for tumorigenicity in the presence of pathologic ERK1/2 signaling. By integration of multigenome chemical and genetic screens, recurrent architectural variants in melanoma tumor genomes, and patient outcome data, we identified two mechanistic subtypes of BRAFV600 melanoma that inform new cancer cell biology and offer new therapeutic opportunities. Subtype membership defines sensitivity to clinical MEK inhibitors versus TBK1/IKBKε inhibitors. Importantly, subtype membership can be predicted using a robust quantitative five-feature genetic biomarker. This biomarker, and the mechanistic relationships linked to it, can identify a cohort of best responders to clinical MEK inhibitors and identify a cohort of TBK1/IKBKε inhibitor-sensitive disease among nonresponders to current targeted therapy.Significance: This study identified two mechanistic subtypes of melanoma: (1) the best responders to clinical BRAF/MEK inhibitors (25%) and (2) nonresponders due to primary resistance mechanisms (9.9%). We identified robust biomarkers that can detect these subtypes in patient samples and predict clinical outcome. TBK1/IKBKε inhibitors were selectively toxic to drug-resistant melanoma. Cancer Discov; 7(8); 832-51. ©2017 AACR.See related commentary by Jenkins and Barbie, p. 799This article is highlighted in the In This Issue feature, p. 783.


Asunto(s)
Biomarcadores de Tumor/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Carcinogénesis/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/clasificación , Melanoma/patología , Ratones , Mutación , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cell Rep ; 18(4): 961-976, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28122245

RESUMEN

Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Factor de Transcripción 2 de los Oligodendrocitos/genética , Factores de Transcripción SOXB1/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Animales , Astrocitos/citología , Astrocitos/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gefitinib , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Clasificación del Tumor , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Plicamicina/farmacología , Quinazolinas/uso terapéutico , Interferencia de ARN , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factores de Transcripción SOXB1/antagonistas & inhibidores , Factores de Transcripción SOXB1/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
4.
Oncotarget ; 7(40): 64921-64931, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27626314

RESUMEN

Ets related gene (ERG) is a transcription factor that is overexpressed in 40% of prostate tumors due to a gene fusion between ERG and TMPRSS2. Because ERG functions as a driver of prostate carcinogenesis, understanding the mechanisms that influence its turnover may provide new molecular handles to target the protein. Previously, we found that ERG undergoes ubiquitination and then is deubiquitinated by USP9X in prostate cancer cells to prevent its proteasomal degradation. Here, we identify Tripartite motif-containing protein 25 (TRIM25) as the E3 ubiquitin ligase that ubiquitinates the protein prior to its degradation. TRIM25 binds full-length ERG, and it also binds the N-terminally truncated variants of ERG that are expressed in tumors with TMPRSS2-ERG fusions. We demonstrate that TRIM25 polyubiquitinates ERG in vitro and that inactivation of TRIM25 resulted in reduced polyubiquitination and stabilization of ERG. TRIM25 mRNA and protein expression was increased in ERG rearrangement-positive prostate cancer specimens, and we provide evidence that ERG upregulates TRIM25 expression. Thus, overexpression of ERG in prostate cancer may cause an increase in TRIM25 activity, which is mitigated by the expression of the deubiquitinase USP9X, which is required to stabilize ERG.


Asunto(s)
Neoplasias de la Próstata/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Masculino , Terapia Molecular Dirigida , Proteínas de Fusión Oncogénica/genética , Neoplasias de la Próstata/genética , Unión Proteica , Proteolisis , ARN Interferente Pequeño/genética , Serina Endopeptidasas/genética , Factores de Transcripción/genética , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
5.
Cell Metab ; 20(4): 650-61, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25264247

RESUMEN

The nuclear receptor peroxisome-proliferation-activated receptor gamma (PPARγ), a transcriptional master regulator of glucose and lipid metabolism, inhibits the growth of several common cancers, including lung cancer. In this study, we show that the mechanism by which activation of PPARγ inhibits proliferation of lung cancer cells is based on metabolic changes. We found that treatment with the PPARγ agonist pioglitazone triggers a metabolic switch that inhibits pyruvate oxidation and reduces glutathione levels. These PPARγ-induced metabolic changes result in a marked increase of reactive oxygen species (ROS) levels that lead to rapid hypophosphorylation of retinoblastoma protein (RB) and cell-cycle arrest. The antiproliferative effect of PPARγ activation can be prevented by suppressing pyruvate dehydrogenase kinase 4 (PDK4) or ß-oxidation of fatty acids in vitro and in vivo. Our proposed mechanism also suggests that metabolic changes can rapidly and directly inhibit cell-cycle progression of cancer cells by altering ROS levels.


Asunto(s)
PPAR gamma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , PPAR gamma/agonistas , PPAR gamma/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Pioglitazona , Mapas de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Proteína de Retinoblastoma/metabolismo , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico , Trasplante Heterólogo , Trimetazidina/farmacología , Trimetazidina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA