Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 369: 122365, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232329

RESUMEN

Olive oil production is one of the most developed Europe's sectors, producing olive oil and undesirable by-products, such as olive mill wastewater (OMWW) and organic waste. OMWW, containing large amounts of compounds (mainly polyphenols, phenols, and tannins), represents a problem. In fact, polyphenols have dual nature: i) antioxidant beneficial properties, useful in many industrial fields, ii) biorefractory character making them harmful in high concentrations. If not properly treated, polyphenols can harm biodiversity, disrupt ecological balance, and degrade water quality, posing risks to both environment and human health. From a circular economy viewpoint, capturing large quantities of polyphenols to reuse and removing their residuals from water is an open challenge. This study proposes, for the first time, a new path beyond the state-of-the-art, combining adsorption and degradation technologies by novel, eco-friendly and easily recoverable bismuth-based materials to capture large amounts of two model polyphenols (gallic acid and 3,4,5-trimethoxybenzoic acid), which are difficult to remove by traditional processes, and photodegrade them under solar light. The coupled process gave rise to collect 98% polyphenols, and to rapidly and effectively photodegrade the remaining portion from water.


Asunto(s)
Bismuto , Polifenoles , Aguas Residuales , Polifenoles/química , Polifenoles/análisis , Bismuto/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Agua/química , Adsorción
2.
Biomacromolecules ; 23(8): 3359-3370, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35900922

RESUMEN

A green, nature-friendly synthesis of polyaniline colloidal particles based on enzyme-assisted oxidation of aniline with horseradish peroxidase and chitosan or poly(vinyl alcohol) as steric stabilizers was successfully employed. Physicochemical characterization revealed formation of particles containing the polyaniline emeraldine salt and demonstrated only a minor effect of polymer stabilizers on particle morphology. All tested colloidal particles showed in vitro antioxidation activity determined via scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. In vitro, they were able to reduce oxidative stress and inhibit the production of reactive oxygen species by neutrophils and inflammatory cytokines by macrophages. The anti-inflammatory effect observed was related to their antioxidant activity, especially in the case of neutrophils. The particles can thus be especially advantageous as active components of biomaterials modulating the early stages of inflammation. In addition to the immunomodulatory effect, the presence of intrinsically conducting polyaniline can impart cell-instructive properties to the particles. The approach to particle synthesis that we employed─an original one using environmentally friendly and biocompatible horseradish peroxidase─represents a smart way of preparing conducting particles with unique properties, which can be further modified by the stabilizers used.


Asunto(s)
Compuestos de Anilina , Antioxidantes , Compuestos de Anilina/química , Antioxidantes/farmacología , Catálisis , Peroxidasa de Rábano Silvestre , Polimerizacion
3.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955952

RESUMEN

More than half of the hospital-associated infections worldwide are related to the adhesion of bacteria cells to biomedical devices and implants. To prevent these infections, it is crucial to modify biomaterial surfaces to develop the antibacterial property. In this study, chitosan (CS) and chondroitin sulfate (ChS) were chosen as antibacterial coating materials on polylactic acid (PLA) surfaces. Plasma-treated PLA surfaces were coated with CS either direct coating method or the carbodiimide coupling method. As a next step for the combined saccharide coating, CS grafted samples were immersed in ChS solution, which resulted in the polyelectrolyte complex (PEC) formation. Also in this experiment, to test the drug loading and releasing efficiency of the thin film coatings, CS grafted samples were immersed into lomefloxacin-containing ChS solution. The successful modifications were confirmed by elemental composition analysis (XPS), surface topography images (SEM), and hydrophilicity change (contact angle measurements). The carbodiimide coupling resulted in higher CS grafting on the PLA surface. The coatings with the PEC formation between CS-ChS showed improved activity against the bacteria strains than the separate coatings. Moreover, these interactions increased the lomefloxacin amount adhered to the film coatings and extended the drug release profile. Finally, the zone of inhibition test confirmed that the CS-ChS coating showed a contact killing mechanism while drug-loaded films have a dual killing mechanism, which includes contact, and release killing.


Asunto(s)
Quitosano , Staphylococcus aureus , Antibacterianos/farmacología , Carbodiimidas/farmacología , Quitosano/farmacología , Materiales Biocompatibles Revestidos/farmacología , Poliésteres/farmacología
4.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35806443

RESUMEN

Surface coatings of materials by polysaccharide polymers are an acknowledged strategy to modulate interfacial biocompatibility. Polysaccharides from various algal species represent an attractive source of structurally diverse compounds that have found application in the biomedical field. Furcellaran obtained from the red algae Furcellaria lumbricalis is a potential candidate for biomedical applications due to its gelation properties and mechanical strength. In the present study, immobilization of furcellaran onto polyethylene terephthalate surfaces by a multistep approach was studied. In this approach, N-allylmethylamine was grafted onto a functionalized polyethylene terephthalate (PET) surface via air plasma treatment. Furcellaran, as a bioactive agent, was anchored on such substrates. Surface characteristics were measured by means of contact angle measurements, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Subsequently, samples were subjected to selected cell interaction assays, such as antibacterial activity, anticoagulant activity, fibroblasts and stem cell cytocompatibility, to investigate the Furcellaran potential in biomedical applications. Based on these results, furcellaran-coated PET films showed significantly improved embryonic stem cell (ESC) proliferation compared to the initial untreated material.


Asunto(s)
Alginatos , Tereftalatos Polietilenos , Antibacterianos/farmacología , Gomas de Plantas , Tereftalatos Polietilenos/química , Polímeros/química , Propiedades de Superficie
5.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269688

RESUMEN

The pseudo 3D hierarchical structure mimicking in vivo microenvironment was prepared by phase separation on tissue culture plastic. For surface treatment, time-sequenced dosing of the solvent mixture with various concentrations of polymer component was used. The experiments showed that hierarchically structured surfaces with macro, meso and micro pores can be prepared with multi-step phase separation processes. Changes in polystyrene surface topography were characterized by atomic force microscopy, scanning electron microscopy and contact profilometry. The cell proliferation and changes in cell morphology were tested on the prepared structured surfaces. Four types of cell lines were used for the determination of impact of the 3D architecture on the cell behavior, namely the mouse embryonic fibroblast, human lung carcinoma, primary human keratinocyte and mouse embryonic stem cells. The increase of proliferation of embryonic stem cells and mouse fibroblasts was the most remarkable. Moreover, the embryonic stem cells express different morphology when cultured on the structured surface. The acquired findings expand the current state of knowledge in the field of cell behavior on structured surfaces and bring new technological procedures leading to their preparation without the use of problematic temporary templates or additives.


Asunto(s)
Fibroblastos , Polímeros , Animales , Proliferación Celular , Ratones , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Polímeros/química , Propiedades de Superficie
6.
Int J Mol Sci ; 23(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35409042

RESUMEN

Hydrophobic fibrous slippery liquid-infused porous surfaces (SLIPS) were fabricated by electrospinning polydimethylsiloxane (PDMS) and polystyrene (PS) as a carrier polymer on plasma-treated polyethylene (PE) and polyurethane (PU) substrates. Subsequent infusion of blackseed oil (BSO) into the porous structures was applied for the preparation of the SLIPS. SLIPS with infused lubricants can act as a repellency layer and play an important role in the prevention of biofilm formation. The effect of polymer solutions used in the electrospinning process was investigated to obtain well-defined hydrophobic fibrous structures. The surface properties were analyzed through various optical, macroscopic and spectroscopic techniques. A comprehensive investigation of the surface chemistry, surface morphology/topography, and mechanical properties was carried out on selected samples at optimized conditions. The electrospun fibers prepared using a mixture of PDMS/PS in the ratio of 1:1:10 (g/g/mL) using tetrahydrofuran (THF) solvent showed the best results in terms of fiber uniformity. The subsequent infusion of BSO into the fabricated PDMS/PS fiber mats exhibited slippery behavior regarding water droplets. Moreover, prepared SLIPS exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli bacterium strains.


Asunto(s)
Dimetilpolisiloxanos , Poliestirenos , Escherichia coli , Polímeros/química , Porosidad
7.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638952

RESUMEN

The growing application of materials containing TiO2 particles has led to an increased risk of human exposure, while a gap in knowledge about the possible adverse effects of TiO2 still exists. In this work, TiO2 particles of rutile, anatase, and their commercial mixture were exposed to various environments, including simulated gastric fluids and human blood plasma (both representing in vivo conditions), and media used in in vitro experiments. Simulated body fluids of different compositions, ionic strengths, and pH were used, and the impact of the absence or presence of chosen enzymes was investigated. The physicochemical properties and agglomeration of TiO2 in these media were determined. The time dependent agglomeration of TiO2 related to the type of TiO2, and mainly to the type and composition of the environment that was observed. The presence of enzymes either prevented or promoted TiO2 agglomeration. TiO2 was also observed to exhibit concentration-dependent cytotoxicity. This knowledge about TiO2 behavior in all the abovementioned environments is critical when TiO2 safety is considered, especially with respect to the significant impact of the presence of proteins and size-related cytotoxicity.


Asunto(s)
Nanopartículas del Metal/química , Plasma/metabolismo , Titanio/química , Titanio/metabolismo , Animales , Donantes de Sangre , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cristalización , Medios de Cultivo/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Voluntarios Sanos , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/efectos adversos , Ratones , Concentración Osmolar , Tamaño de la Partícula , Saliva/metabolismo , Propiedades de Superficie , Titanio/efectos adversos , Agua/metabolismo
8.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34769373

RESUMEN

An innovative multi-step phase separation process was used to prepare tissue culture for the polystyrene-based, hierarchically structured substrates, which mimicked in vivo microenvironment and architecture. Macro- (pore area from 3000 to 18,000 µm2; roughness (Ra) 7.2 ± 0.1 µm) and meso- (pore area from 50 to 300 µm2; Ra 1.1 ± 0.1 µm) structured substrates covered with micro-pores (area around 3 µm2) were prepared and characterised. Both types of substrate were suitable for human-induced pluripotent stem cell (hiPSC) cultivation and were found to be beneficial for the induction of cardiomyogenesis in hiPSC. This was confirmed both by the number of promoted proliferated cells and the expressions of specific markers (Nkx2.5, MYH6, MYL2, and MYL7). Moreover, the substrates amplified the fluorescence signal when Ca2+ flow was monitored. This property, together with cytocompatibility, make this material especially suitable for in vitro studies of cell/material interactions within tissue-mimicking environments.


Asunto(s)
Materiales Biocompatibles/química , Diferenciación Celular , Fluorescencia , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Poliestirenos/química , Proliferación Celular , Humanos
9.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419082

RESUMEN

The active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells. This finding ledto an effort to determine the physiological cascade which is responsible for this effect. The polypyrrole modulates signaling pathways of Akt and ERK kinase through their phosphorylation. These effects are related to the presence of low-molecular-weight compounds present in aqueous polypyrrole extracts, determined by mass spectroscopy. The results show that consequences related to the modulation of stem cell differentiation must also be taken into account when polypyrrole is considered as a biomaterial.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Cuerpos Embrioides/efectos de los fármacos , Células Madre Embrionarias de Ratones/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Polímeros/farmacología , Pirroles/farmacología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Línea Celular , Cuerpos Embrioides/citología , Expresión Génica/efectos de los fármacos , Ratones , Estructura Molecular , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Factor de Transcripción PAX6/genética , Polímeros/química , Pirroles/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/genética
11.
Molecules ; 22(5)2017 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-28448475

RESUMEN

The formulation, characterization, and anticipated antibacterial properties of hemp seed oil and its emulsions were investigated. The oil obtained from the seeds of Cannabis sativa L. in refined and unrefined form was characterized using iodine, saponification, acid values, and gas chromatography, and was employed for the preparation of stable oil-in-water emulsions. The emulsions were prepared using pairs of non-ionic surfactants (Tween, Span). The effects of the emulsification method (spontaneous emulsification vs. high-intensity stirring), hydrophilic lipophilic balance (HLB), type and concentration of surfactant, and oil type on the size and distribution of the emulsion particles were investigated. It was found that the ability to form stable emulsions with small, initial particle sizes is primarily dependent on the given method of preparation and the HLB value. The most efficient method of emulsification that afforded the best emulsions with the smallest particles (151 ± 1 nm) comprised the high-energy method, and emulsions stable over the long-term were observed at HBL 9 with 10 wt % concentration of surfactants. Under high-intensity emulsification, refined and unrefined oils performed similarly. The oils as well as their emulsions were tested against the growth of selected bacteria using the disk diffusion and broth microdilution methods. The antibacterial effect of hemp seed oil was documented against Micrococcus luteus and Staphylococcus aureus subsp. aureus. The formulated emulsions did not exhibit the antibacterial activity that had been anticipated.


Asunto(s)
Antibacterianos/química , Cannabis/química , Extractos Vegetales/química , Aceites de Plantas/química , Semillas/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Sensibilidad Microbiana , Micrococcus luteus/efectos de los fármacos , Tamaño de la Partícula , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Aceites de Plantas/aislamiento & purificación , Aceites de Plantas/farmacología , Staphylococcus aureus/efectos de los fármacos
12.
Int J Mol Sci ; 17(6)2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27294915

RESUMEN

Beside biomaterials' bulk properties, their surface properties are equally important to control interfacial biocompatibility. However, due to the inadequate interaction with tissue, they may cause foreign body reaction. Moreover, surface induced thrombosis can occur when biomaterials are used for blood containing applications. Surface modification of the biomaterials can bring enhanced surface properties in biomedical applications. Sulfated polysaccharide coatings can be used to avoid surface induced thrombosis which may cause vascular occlusion (blocking the blood flow by blood clot), which results in serious health problems. Naturally occurring heparin is one of the sulfated polysaccharides most commonly used as an anticoagulant, but its long term usage causes hemorrhage. Marine sourced sulfated polysaccharide fucoidan is an alternative anticoagulant without the hemorrhage drawback. Heparin and fucoidan immobilization onto a low density polyethylene surface after functionalization by plasma has been studied. Surface energy was demonstrated by water contact angle test and chemical characterizations were carried out by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Surface morphology was monitored by scanning electron microscope and atomic force microscope. Finally, their anticoagulation activity was examined for prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT).


Asunto(s)
Anticoagulantes/química , Polietileno/química , Polisacáridos/química , Anticoagulantes/efectos adversos , Anticoagulantes/farmacología , Sangre/efectos de los fármacos , Heparina/efectos adversos , Heparina/química , Heparina/farmacología , Humanos , Polisacáridos/efectos adversos , Polisacáridos/farmacología
13.
Int J Mol Sci ; 17(9)2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27649159

RESUMEN

Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is.


Asunto(s)
Compuestos de Anilina/farmacología , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Compuestos de Anilina/química , Animales , Materiales Biocompatibles/química , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ratones , Células 3T3 NIH , Propiedades de Superficie
14.
Int J Mol Sci ; 15(8): 14684-96, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25196604

RESUMEN

Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance.


Asunto(s)
Alginatos/química , Antibacterianos/química , Antibacterianos/farmacología , Polietileno/química , Escherichia coli/efectos de los fármacos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos
15.
Int J Biol Macromol ; 265(Pt 2): 131036, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518940

RESUMEN

Thin composite films comprising two primary representatives of conducting polymers, poly(3, 4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), with eco-friendly cellulose nanocrystals (CNC) were prepared through electrochemical polymerization. The combination of CNC and PEDOT (or PPy) results in the formation of films with highly different surface topography and thickness. Intriguingly, different surface conductivity of PEDOT and PPy was revealed by atomic force microscopy albeit that the electrochemical properties were rather similar. The biological properties of the composites in contact with prospective human induced pluripotent stem cells (hiPSC) and cardiomyocytes derived from hiPSC demonstrated good cytocompatibility of both composites and their potential in engineering of electro-sensitive tissues. The as-prepared conducting, eco-friendly and cytocompatible composites are thus promising candidates for biomedical applications where stimuli-responsivity is a crucial cell-instructive property.


Asunto(s)
Células Madre Pluripotentes Inducidas , Nanopartículas , Humanos , Polímeros/química , Celulosa/química , Ingeniería de Tejidos , Estudios Prospectivos , Pirroles/química
16.
Sci Rep ; 14(1): 12186, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806564

RESUMEN

Polyetheretherketone (PEEK) is considered as an excellent biomaterial for bone grafting and connective tissue replacement. The clinical potential is, however, limited by its bioinertness, poor osteoconduction, and weak antibacterial activity. These disadvantages can be overcome by introducing suitable additives to produce mineral-polymer composites or coatings. In this work, a PEEK-based bioactive composite has been obtained by blending the polymer with magnesium phosphate (Mg3(PO4)2) particles in amounts ranging from 1 to 10 wt.% using the hot press technique. The obtained composite exhibited improved mechanical and physical properties, above the lower limits set for bone engineering applications. The tested grafts were found to not induce cytotoxicity. The presence of magnesium phosphate induced the mineralisation process with no adverse effects on the expression of the marker crucial for osteoblastic differentiation. The most promising results were observed in the grafts containing 1 wt.% of magnesium phosphate embedded within the PEEK matrix. The improved bioactivity of grafts, together with suitable physical-chemical and mechanical properties, indicate this composite as a promising orthopaedic implant material.


Asunto(s)
Benzofenonas , Materiales Biocompatibles , Cetonas , Fosfatos , Polietilenglicoles , Polímeros , Cetonas/química , Cetonas/farmacología , Polímeros/química , Polietilenglicoles/química , Materiales Biocompatibles/química , Fosfatos/química , Humanos , Compuestos de Magnesio/química , Compuestos de Magnesio/farmacología , Ensayo de Materiales , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo
17.
Carbohydr Polym ; 327: 121640, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171669

RESUMEN

In this work, conductive composite hydrogels with covalently attached polypyrrole (PPy) nanoparticles are prepared. Hydrogels are based on partially re-acetylated chitosan soluble at physiological pH without any artificial structural modifications or need for an acidic environment, which simplifies synthesis and purification. Low-toxic and sustainable dialdehyde cellulose (DAC) was used for crosslinking chitosan and covalent anchoring of PPy colloidal particles. The condensation reaction between DAC and PPy is reported for the first time and improves not only the anchoring of PPy particles but also control over the properties of the final composite. The soluble chitosan and PPy particles are shown to act in synergy, which improves the biological properties of the materials. Prepared composite hydrogels are non-cytotoxic, non-irritating, antibacterial, can capture reactive oxygen species often related to excessive inflammation, have conductivity similar to human tissues, enhance in vitro cell growth (migration assay), and have immunomodulatory effects related to the stimulation of neutrophils and macrophages. The covalent attachment of PPy also strengthens the hydrogel network. The aldol condensation as a method for PPy covalent anchoring thus presents an interesting possibility for the development of advanced biomaterials in the future.


Asunto(s)
Quitosano , Humanos , Quitosano/química , Polímeros/química , Hidrogeles/farmacología , Hidrogeles/química , Pirroles/química , Antioxidantes/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antiinflamatorios/farmacología
18.
Heliyon ; 10(6): e27883, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545158

RESUMEN

The in situ coating of polymer substrate with polypyrrole, described herein with detailed know-how, represents a novel technique of surface functionalization. The choice of oxidizing agent and the polymerization time both affect the properties of the thin polypyrrole layer. The specific conductivity, free surface energy, thickness, topography, and FTIR spectra of polypyrrole layer were determined. The conductive coatings were further used to functionalize both isotropic and anisotropic electrospun polyurethane nanofibrous mats to show their applicability and study the bioactive effect of both the anisotropy and conductivity together. The morphology of composites was studied by means of atomic force microscopy and scanning electron microscopy. A complex cytocompatibility study was performed, including determining cytotoxicity by optical and fluorescence microscopy, the advanced qualification of cell morphology by cell-image analysis, and a study of stem cell behavior. The results clearly showed the significant impact of substrate modification on cells, especially on fibroblasts while the embryonic stem cells were less affected. This study shows not only the effective way to prepare a thin conducting layer based on polypyrrole but also demonstrates its importance for the fabrication of smart biomaterials.

19.
Molecules ; 18(11): 13435-45, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24177700

RESUMEN

The phenolic extract of chives flowers (Allium schoenoprasum, Liliaceae), introduced Sage (Salvia pratensis, Lamiaceae), European elderberry (Sambucus nigra, Caprifoliaceae) and common dandelion (Taraxacum officinale, Asteraceae) were characterised by High Performance Liquid Chromatography and incorporated in different concentrations onto atelocollagen thin films. In order to assess the biological impact of these phenolic compounds on cell viability, human immortalised non-tumorigenic keratinocyte cell line was seeded on the thin films and cell proliferation was determined by using an MTT assay. In addition, their antimicrobial activity was estimated by using an agar diffusion test. Data indicated the concomitance between cell viability and concentration of polyphenols. These findings suggest that these phenolic-endowed atelocollagen films might be suitable for tissue engineering applications, on account of the combined activity of polyphenols and collagen.


Asunto(s)
Colágeno/química , Flores/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Cromatografía Líquida de Alta Presión , Humanos , Ingeniería de Tejidos
20.
Discov Nano ; 18(1): 38, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-37382704

RESUMEN

In this study, novel Trojan particles were engineered for direct delivery of doxorubicin (DOX) and miR-34a as model drugs to the lungs to raise local drug concentration, decrease pulmonary clearance, increase lung drug deposition, reduce systemic side effects, and overcome multi-drug resistance. For this purpose, targeted polyelectrolyte nanoparticles (tPENs) developed with layer-by-layer polymers (i.e., chitosan, dextran sulfate, and mannose-g-polyethyleneimine) were spray dried into a multiple-excipient (i.e., chitosan, leucine, and mannitol). The resulting nanoparticles were first characterized in terms of size, morphology, in vitro DOX release, cellular internalization, and in vitro cytotoxicity. tPENs showed comparable cellular uptake levels to PENs in A549 cells and no significant cytotoxicity on their metabolic activity. Co-loaded DOX/miR-34a showed a greater cytotoxicity effect than DOX-loaded tPENs and free drugs, which was confirmed by Actin staining. Thereafter, nano-in-microparticles were studied through size, morphology, aerosolization efficiency, residual moisture content, and in vitro DOX release. It was demonstrated that tPENs were successfully incorporated into microspheres with adequate emitted dose and fine particle fraction but low mass median aerodynamic diameter for deposition into the deep lung. The dry powder formulations also demonstrated a sustained DOX release at both pH values of 6.8 and 7.4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA