Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443211

RESUMEN

Hippocampal synaptic plasticity is important for learning and memory formation. Homeostatic synaptic plasticity is a specific form of synaptic plasticity that is induced upon prolonged changes in neuronal activity to maintain network homeostasis. While astrocytes are important regulators of synaptic transmission and plasticity, it is largely unclear how they interact with neurons to regulate synaptic plasticity at the circuit level. Here, we show that neuronal activity blockade selectively increases the expression and secretion of IL-33 (interleukin-33) by astrocytes in the hippocampal cornu ammonis 1 (CA1) subregion. This IL-33 stimulates an increase in excitatory synapses and neurotransmission through the activation of neuronal IL-33 receptor complex and synaptic recruitment of the scaffold protein PSD-95. We found that acute administration of tetrodotoxin in hippocampal slices or inhibition of hippocampal CA1 excitatory neurons by optogenetic manipulation increases IL-33 expression in CA1 astrocytes. Furthermore, IL-33 administration in vivo promotes the formation of functional excitatory synapses in hippocampal CA1 neurons, whereas conditional knockout of IL-33 in CA1 astrocytes decreases the number of excitatory synapses therein. Importantly, blockade of IL-33 and its receptor signaling in vivo by intracerebroventricular administration of its decoy receptor inhibits homeostatic synaptic plasticity in CA1 pyramidal neurons and impairs spatial memory formation in mice. These results collectively reveal an important role of astrocytic IL-33 in mediating the negative-feedback signaling mechanism in homeostatic synaptic plasticity, providing insights into how astrocytes maintain hippocampal network homeostasis.


Asunto(s)
Astrocitos/metabolismo , Región CA1 Hipocampal/metabolismo , Interleucina-33/metabolismo , Plasticidad Neuronal , Transducción de Señal/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large/metabolismo , Técnicas de Inactivación de Genes , Hipocampo/metabolismo , Homeostasis , Interleucina-33/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/genética , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Tetrodotoxina/farmacología
2.
Proc Natl Acad Sci U S A ; 113(19): E2705-13, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27091974

RESUMEN

Alzheimer's disease (AD) is a devastating condition with no known effective treatment. AD is characterized by memory loss as well as impaired locomotor ability, reasoning, and judgment. Emerging evidence suggests that the innate immune response plays a major role in the pathogenesis of AD. In AD, the accumulation of ß-amyloid (Aß) in the brain perturbs physiological functions of the brain, including synaptic and neuronal dysfunction, microglial activation, and neuronal loss. Serum levels of soluble ST2 (sST2), a decoy receptor for interleukin (IL)-33, increase in patients with mild cognitive impairment, suggesting that impaired IL-33/ST2 signaling may contribute to the pathogenesis of AD. Therefore, we investigated the potential therapeutic role of IL-33 in AD, using transgenic mouse models. Here we report that IL-33 administration reverses synaptic plasticity impairment and memory deficits in APP/PS1 mice. IL-33 administration reduces soluble Aß levels and amyloid plaque deposition by promoting the recruitment and Aß phagocytic activity of microglia; this is mediated by ST2/p38 signaling activation. Furthermore, IL-33 injection modulates the innate immune response by polarizing microglia/macrophages toward an antiinflammatory phenotype and reducing the expression of proinflammatory genes, including IL-1ß, IL-6, and NLRP3, in the cortices of APP/PS1 mice. Collectively, our results demonstrate a potential therapeutic role for IL-33 in AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/fisiopatología , Encéfalo/fisiopatología , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/fisiopatología , Interleucina-33/administración & dosificación , Enfermedad de Alzheimer/diagnóstico , Animales , Encéfalo/efectos de los fármacos , Trastornos del Conocimiento/diagnóstico , Citocinas/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Fármacos Neuroprotectores/administración & dosificación , Resultado del Tratamiento
3.
Proc Natl Acad Sci U S A ; 111(27): 9959-64, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958880

RESUMEN

Alzheimer's disease (AD), characterized by cognitive decline, has emerged as a disease of synaptic failure. The present study reveals an unanticipated role of erythropoietin-producing hepatocellular A4 (EphA4) in mediating hippocampal synaptic dysfunctions in AD and demonstrates that blockade of the ligand-binding domain of EphA4 reverses synaptic impairment in AD mouse models. Enhanced EphA4 signaling was observed in the hippocampus of amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD, whereas soluble amyloid-ß oligomers (Aß), which contribute to synaptic loss in AD, induced EphA4 activation in rat hippocampal slices. EphA4 depletion in the CA1 region or interference with EphA4 function reversed the suppression of hippocampal long-term potentiation in APP/PS1 transgenic mice, suggesting that the postsynaptic EphA4 is responsible for mediating synaptic plasticity impairment in AD. Importantly, we identified a small-molecule rhynchophylline as a novel EphA4 inhibitor based on molecular docking studies. Rhynchophylline effectively blocked the EphA4-dependent signaling in hippocampal neurons, and oral administration of rhynchophylline reduced the EphA4 activity effectively in the hippocampus of APP/PS1 transgenic mice. More importantly, rhynchophylline administration restored the impaired long-term potentiation in transgenic mouse models of AD. These findings reveal a previously unidentified role of EphA4 in mediating AD-associated synaptic dysfunctions, suggesting that it is a new therapeutic target for this disease.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Receptor EphA4/metabolismo , Sinapsis/fisiología , Enfermedad de Alzheimer/metabolismo , Animales , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Receptor EphA4/genética , Sinapsis/metabolismo
4.
Neurosignals ; 21(1-2): 55-60, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22398430

RESUMEN

Cyclin-dependent kinase 5 (Cdk5), a member of the cyclin-dependent kinase family, is critical for regulating neural development and neuronal survival. Dysregulation of Cdk5 is associated with abnormal expression of cell cycle-related proteins during neuronal apoptosis. We have previously found that p35, a Cdk5 activator, interacts with mSds3, an integral component of the histone deacetylase complex in vitro, suggesting a functional role of Cdk5 in gene regulation through modulation of chromatin integrity. In this study, we further demonstrate that Cdk5-dependent phosphorylation of mSds3 at Ser228 occurs in mouse brain nuclei. The expression of mSds3 protein and its interaction with Cdk5 activators is developmentally regulated in the mouse brain. Importantly, our findings suggest that the ability of Cdk5 to regulate activity deprivation-induced apoptosis of cerebellar granule neurons is likely mediated by the regulation of histone acetylation. Suppression of Cdk5 not only attenuates the induction of histone H3 acetylation and the aberrant upregulation of cyclin proteins in neurons after activity deprivation, but also results in protection of neurons against apoptotic cell death. Taken together, our findings suggest that Cdk5 regulates neuronal survival by precise epigenetic control through modulation of histone acetylation.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Neuronas/metabolismo , Acetilación , Animales , Muerte Celular/fisiología , Células Cultivadas , Cerebelo/metabolismo , Células HEK293 , Humanos , Ratones , Fosforilación/fisiología
5.
ACS Chem Neurosci ; 12(22): 4249-4256, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34738783

RESUMEN

Alzheimer's disease (AD), the most common neurodegenerative disease, has limited treatment options. As such, extensive studies have been conducted to identify novel therapeutic approaches. We previously reported that rhynchophylline (Rhy), a small molecule EphA4 inhibitor, rescues impaired hippocampal synaptic plasticity and cognitive dysfunctions in APP/PS1 mice, an AD transgenic mouse model. To assess whether Rhy can be developed as an alternative treatment for AD, it is important to examine its pharmacokinetics and effects on other disease-associated pathologies. Here, we show that Rhy ameliorates amyloid plaque burden and reduces inflammation in APP/PS1 mice. Transcriptome analysis revealed that Rhy regulates various molecular pathways in APP/PS1 mouse brains associated with amyloid metabolism and inflammation, specifically the ubiquitin proteasome system, angiogenesis, and microglial functional states. These results show that Rhy, which is blood-brain barrier permeable, is beneficial to amyloid pathology and regulates multiple molecular pathways.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxindoles , Placa Amiloide/tratamiento farmacológico , Presenilina-1/genética
6.
Nat Neurosci ; 14(2): 181-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21186356

RESUMEN

Homeostatic plasticity is crucial for maintaining neuronal output by counteracting unrestrained changes in synaptic strength. Chronic elevation of synaptic activity by bicuculline reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs), but the underlying mechanisms of this effect remain unclear. We found that activation of EphA4 resulted in a decrease in synaptic and surface GluR1 and attenuated mEPSC amplitude through a degradation pathway that requires the ubiquitin proteasome system (UPS). Elevated synaptic activity resulted in increased tyrosine phosphorylation of EphA4, which associated with the ubiquitin ligase anaphase-promoting complex (APC) and its activator Cdh1 in neurons in a ligand-dependent manner. APC(Cdh1) interacted with and targeted GluR1 for proteasomal degradation in vitro, whereas depletion of Cdh1 in neurons abolished the EphA4-dependent downregulation of GluR1. Knockdown of EphA4 or Cdh1 prevented the reduction in mEPSC amplitude in neurons that was a result of chronic elevated activity. Our results define a mechanism by which EphA4 regulates homeostatic plasticity through an APC(Cdh1)-dependent degradation pathway.


Asunto(s)
Regulación hacia Abajo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Receptor EphA4/metabolismo , Receptores AMPA/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Análisis de Varianza , Ciclosoma-Complejo Promotor de la Anafase , Animales , Bicuculina/farmacología , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Electrofisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas de Receptores de GABA-A/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Interferente Pequeño , Receptores AMPA/genética , Estadísticas no Paramétricas , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/fisiología
7.
Proc Natl Acad Sci U S A ; 104(41): 16347-52, 2007 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-17911252

RESUMEN

EphA4-dependent growth cone collapse requires reorganization of actin cytoskeleton through coordinated activation of Rho family GTPases. Whereas various guanine exchange factors have recently been identified to be involved in EphA4-mediated regulation of Rho GTPases and growth cone collapse, the functional roles of GTPase-activating proteins in the process are largely unknown. Here we report that EphA4 interacts with alpha2-chimaerin through its Src homology 2 domain. Activated EphA4 induces a rapid increase of tyrosine phosphorylation of alpha2-chimaerin and enhances its GTPase-activating protein activity toward Rac1. More importantly, alpha2-chimaerin regulates the action of EphA4 in growth cone collapse through modulation of Rac1 activity. Our findings have therefore identified a new alpha2-chimaerin-dependent signaling mechanism through which EphA4 transduces its signals to the actin cytoskeleton and modulates growth cone morphology.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Quimerina 1/metabolismo , Conos de Crecimiento/metabolismo , Receptor EphA4/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Quimerina 1/química , Conos de Crecimiento/ultraestructura , Humanos , Neuronas/metabolismo , Fosforilación , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal , Tirosina/química , Proteína de Unión al GTP rac1/metabolismo
8.
J Biol Chem ; 279(52): 54438-44, 2004 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-15489224

RESUMEN

Cyclin-dependent kinase 5 (Cdk5), a serine/threonine kinase that displays kinase activity predominantly in neurons, is activated by two non-cyclin activators, p35 or p39. Here, we report a physical and functional interaction between the Cdk5/p35 complex and mouse Sds3 (mSds3), an essential component of mSin3-histone deacetylase (HDAC) co-repressor complex. mSds3 binds to p35 both in vitro and in vivo, enabling active Cdk5 to phosphorylate mSds3 at serine 228. A mSds3 S228A mutant retained mSin3 binding activity, but its dimerization was not greatly enhanced by p35 when compared with wild type. Notably, p35 overexpression augmented mSds3-mediated transcriptional repression in vitro. Interestingly, mutational studies revealed that the ability of exogenous mSds3 to rescue cell growth and viability in mSds3 null cells correlates with its ability to be phosphorylated by Cdk5. The identification of mSds3 as a substrate of the Cdk5/p35 complex reveals a new regulatory mechanism in controlling the mSin3-HDAC transcriptional repressor activity and provides a new potential therapeutic means to inhibit specific HDAC activities in disease.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Animales , Northern Blotting , Química Encefálica , Células COS , Línea Celular , Línea Celular Transformada , Quinasa 5 Dependiente de la Ciclina , Dimerización , Glutatión Transferasa/genética , Histona Desacetilasas/metabolismo , Ratones , Músculos/química , Mutagénesis , Células 3T3 NIH , Fosforilación , ARN Mensajero/análisis , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Serina/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Transfección , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA