Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Allergy ; 78(9): 2344-2360, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37087637

RESUMEN

While both the incidence and general awareness of food allergies is increasing, the variety and clinical availability of therapeutics remain limited. Therefore, investigations into the potential factors contributing to the development of food allergy (FA) and the mechanisms of natural tolerance or induced desensitization are required. In addition, a detailed understanding of the pathophysiology of food allergies is needed to generate compelling, enduring, and safe treatment options. New findings regarding the contribution of barrier function, the effect of emollient interventions, mechanisms of allergen recognition, and the contributions of specific immune cell subsets through rodent models and human clinical studies provide novel insights. With the first approved treatment for peanut allergy, the clinical management of FA is evolving toward less intensive, alternative approaches involving fixed doses, lower maintenance dose targets, coadministration of biologicals, adjuvants, and tolerance-inducing formulations. The ultimate goal is to improve immunotherapy and develop precision-based medicine via risk phenotyping allowing optimal treatment for each food-allergic patient.


Asunto(s)
Hipersensibilidad a los Alimentos , Hipersensibilidad al Cacahuete , Humanos , Hipersensibilidad a los Alimentos/terapia , Alimentos , Alérgenos , Inmunoterapia , Desensibilización Inmunológica
2.
Allergy ; 78(2): 500-511, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377289

RESUMEN

BACKGROUND: Food allergy affects up to 10% of the pediatric population. Despite ongoing efforts, treatment options remain limited. Novel models of food allergy are needed to study response patterns downstream of IgE-crosslinking and evaluate drugs modifying acute events. Here, we report a novel human ex vivo model that displays acute, allergen-specific, IgE-mediated smooth muscle contractions using precision cut intestinal slices (PCIS). METHODS: PCIS were generated using gut tissue samples from children who underwent clinically indicated surgery. Viability and metabolic activity were assessed from 0 to 24 h. Distribution of relevant cell subsets was confirmed using single nucleus RNA sequencing. PCIS were passively sensitized using plasma from peanut allergic donors or peanut-sensitized non-allergic donors, and exposed to various stimuli including serotonin, histamine, FcɛRI-crosslinker, and food allergens. Smooth muscle contractions and mediator release functioned as readouts. A novel program designed to measure contractions was developed to quantify responses. The ability to demonstrate the impact of antihistamines and immunomodulation from peanut oral immunotherapy (OIT) was assessed. RESULTS: PCIS viability was maintained for 24 h. Cellular distribution confirmed the presence of key cell subsets including mast cells. The video analysis tool reliably quantified responses to different stimulatory conditions. Smooth muscle contractions were allergen-specific and reflected the clinical phenotype of the plasma donor. Tryptase measurement confirmed IgE-dependent mast cell-derived mediator release. Antihistamines suppressed histamine-induced contraction and plasma from successful peanut OIT suppressed peanut-specific PCIS contraction. CONCLUSION: PCIS represent a novel human tissue-based model to study acute, IgE-mediated food allergy and pharmaceutical impacts on allergic responses in the gut.


Asunto(s)
Hipersensibilidad a los Alimentos , Hipersensibilidad al Cacahuete , Humanos , Niño , Histamina , Hipersensibilidad al Cacahuete/terapia , Alérgenos , Inmunoglobulina E , Arachis
3.
Allergy ; 76(6): 1800-1812, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33300157

RESUMEN

BACKGROUND: Peanut and tree nut allergies are the most important causes of anaphylaxis. Co-reactivity to more than one nut is frequent, and co-sensitization in the absence of clinical data is often obtained. Confirmatory oral food challenges (OFCs) are inconsistently performed. OBJECTIVE: To investigate the utility of the basophil activation test (BAT) in diagnosing peanut and tree nut allergies. METHODS: The Markers Of Nut Allergy Study (MONAS) prospectively enrolled patients aged 0.5-17 years with confirmed peanut and/or tree nut (almond, cashew, hazelnut, pistachio, walnut) allergy or sensitization from Canadian (n = 150) and Austrian (n = 50) tertiary pediatric centers. BAT using %CD63+ basophils (SSClow/CCR3pos) as outcome was performed with whole blood samples stimulated with allergen extracts of each nut (0.001-1000 ng/mL protein). BAT results were assessed against confirmed allergic status in a blinded fashion to develop a generalizable statistical model for comparison to extract and marker allergen-specific IgE. RESULTS: A mixed effect model integrating BAT results for 10 and 100 ng/mL of peanut and individual tree nut extracts was optimal. The area under the ROC curve (AUROC) was 0.98 for peanut, 0.97 for cashew, 0.92 for hazelnut, 0.95 for pistachio, and 0.97 for walnut. The BAT outperformed sIgE testing for peanut or hazelnut and was comparable for walnut (AUROC 0.95, 0.94, 0.92) in a sub-analysis in sensitized patients undergoing OFC. CONCLUSIONS: Basophil activation test can predict allergic clinical status to peanut and tree nuts in multi-nut-sensitized children and may reduce the need for high-risk OFCs in patients.


Asunto(s)
Hipersensibilidad a la Nuez , Hipersensibilidad al Cacahuete , Alérgenos , Arachis , Austria , Basófilos , Canadá , Niño , Humanos , Hipersensibilidad a la Nuez/diagnóstico , Nueces , Hipersensibilidad al Cacahuete/diagnóstico , Pruebas Cutáneas
4.
Proc Natl Acad Sci U S A ; 115(11): 2800-2805, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29472448

RESUMEN

Activation-induced cytidine deaminase (AID) inflicts DNA damage at Ig genes to initiate class switch recombination (CSR) and chromosomal translocations. However, the DNA lesions formed during these processes retain an element of randomness, and thus knowledge of the relationship between specific DNA lesions and AID-mediated processes remains incomplete. To identify necessary and sufficient DNA lesions in CSR, the Cas9 endonuclease and nickase variants were used to program DNA lesions at a greater degree of predictability than is achievable with conventional induction of CSR. Here we show that Cas9-mediated nicks separated by up to 250 nucleotides on opposite strands can mediate CSR. Staggered double-stranded breaks (DSBs) result in more end resection and junctional microhomology than blunt DSBs. Moreover, Myc-Igh chromosomal translocations, which are carried out primarily by alternative end joining (A-EJ), were preferentially induced by 5' DSBs. These data indicate that DSBs with 5' overhangs skew intrachromosomal and interchromosomal end-joining toward A-EJ. In addition to lending potential insight to AID-mediated phenomena, this work has broader carryover implications in DNA repair and lymphomagenesis.


Asunto(s)
Cromosomas de los Mamíferos/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Recombinación Genética , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Citidina Desaminasa/metabolismo , Ratones , Translocación Genética
5.
Allergy ; 74(12): 2355-2367, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31593325

RESUMEN

The achievement of long-lasting, safe treatments for food allergy is dependent on the understanding of the immunological basis of food allergy. Accurate diagnosis is essential for management. In recent years, data from oral food challenges have revealed that routine allergy testing is poor at predicting clinical allergy for tree nuts, almonds in particular. More advanced antigen-based tests including component-resolved diagnostics and epitope reactivity may lead to more accurate diagnosis and selection of therapeutic intervention. Additional diagnostic accuracy may come from cellular tests such as the basophil activation test or mast cell approaches. In the context of clinical trials, cellular tests have revealed specific T-cell and B-cell populations that are more abundant in food-allergic individuals with distinct mechanistic features. Awareness of clinical markers, such as the ability to eat baked forms of milk and egg, continues to inform the understanding of natural tolerance development. Mouse models have allowed for investigation into multiple mechanisms of food allergy including modification of epithelial metabolism, and the induction of regulatory cell subsets and the microbiome. Increasing numbers of children who underwent food immunotherapy enlarged the body of evidence on mechanisms and predictors of treatment success. Experimental immunological markers in conjunction with clinical determinants such as lower age and lower initial specific IgE appear to be of benefit. More research on the optimal dose, preparation, and route of application integrating a high-level safety and efficacy is demanded. Alternatively, biologics blocking TSLP, IL-33, IL-4 and IL-13, or IgE may help to achieve that.


Asunto(s)
Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/terapia , Alérgenos/inmunología , Animales , Biomarcadores , Terapia Combinada , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Hipersensibilidad a los Alimentos/etiología , Hipersensibilidad a los Alimentos/metabolismo , Humanos , Tolerancia Inmunológica , Insuficiencia del Tratamiento , Resultado del Tratamiento
6.
Asia Pac Allergy ; 9(1): e4, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30740352

RESUMEN

Food allergy is a growing global public health concern. As treatment strategies are currently limited to allergen avoidance and emergency interventions, there is an increasing demand for appropriate models of food allergy for the development of new therapeutics. Many models of food allergy rely heavily on the use of animals, and while useful, many are unable to accurately reflect the human system. In order to bridge the gap between in vivo animal models and clinical trials with human patients, human models of food allergy are of great importance. This review will summarize the commonly used human ex vivo and in vitro models of food allergy and highlight their advantages and limitations regarding how accurately they represent the human in vivo system. We will cover biopsy-based systems, precision cut organ slices, and coculture systems as well as organoids and organ-on-a-chip. The availability of appropriate experimental models will allow us to move forward in the field of food allergy research, to search for effective treatment options and to further explore the cause and progression of this disorder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA