Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polym Degrad Stab ; 1742020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36452512

RESUMEN

The macroscopic mechanical behavior of high-density polyethylene (HDPE) during photodegradation is characterized by decreases of tensile elongation-at-failure. An apparent linear relation between the elongation-at-failure and the molar mass indicates that the decrease of the elongation of HDPE over time is highly dependent on the decrease of the average molar mass. Possible preferential scission of the high molar mass chains was observed for HDPE exposed to ultraviolet (UV) irradiance higher than 40% (61 W/m2) of the full intensity at 50 °C. Tensile modulus of HDPE exposed at 50 °C increased with the exposure time until reaching the complete loss of ductility except the 5% UV. For 40% UV/30 °C as well as for 5% UV/50 °C, the young modulus trend cannot be evaluated with performed (small) duration. Nanomechanical test results suggest that the increased tensile modulus is due to stiffening of the entire cross-section. Furthermore, HDPE showing the complete loss of ductility exhibited significantly higher modulus in the surface regions than the core regions particularly for the UV intensity higher than 40% (61 W/m2), which increased crack sensitivity to cause embrittlement of the entire specimens.

2.
Carbon N Y ; 125: 63-75, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29170562

RESUMEN

As carbon nanotube (CNT) infused hybrid composites are increasingly identified as next-generation aerospace materials, it is vital to evaluate their long-term structural performance under aging environments. In this work, the durability of hierarchical, aligned CNT grafted aluminoborosilicate microfiber-epoxy composites (CNT composites) are compared against baseline aluminoborosilicate composites (baseline composites), before and after immersion in water at 25 °C (hydro) and 60 °C (hydrothermal), for extended durations (90 d and 180 d). The addition of CNTs is found to reduce water diffusivities by approximately 1.5 times. The mechanical properties (bending strength and modulus) and the damage sensing capabilities (DC conductivity) of CNT composites remain intact regardless of exposure conditions. The baseline composites show significant loss of strength (44 %) after only 15 d of hydrothermal aging. This loss of mechanical strength is attributed to fiber-polymer interfacial debonding caused by accumulation of water at high temperatures. In situ acoustic and DC electrical measurements of hydrothermally aged CNT composites identify extensive stress-relieving micro-cracking and crack deflections that are absent in the aged baseline composites. These observations are supported by SEM images of the failed composite cross-sections that highlight secondary matrix toughening mechanisms in the form of CNT pullouts and fractures which enhance the service life of composites and maintain their properties under accelerated aging environments.

3.
Soft Matter ; 11(20): 3994-4001, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25893710

RESUMEN

Moisture attack on adhesive joints is a long-standing scientific and engineering problem. A particularly interesting observation is that when the moisture level in certain systems exceeds a critical concentration, the bonded joint shows a dramatic loss of strength. The joint interface plays a dominant role in this phenomenon; however, why a critical concentration of moisture exists and what role is played by the properties of the bulk adhesive have not been adequately addressed. Moreover if the interface is crucial, the local water content near the interface will help elucidate the mechanisms of criticality more than the more commonly examined bulk water concentration in the adhesive. To gain a detailed picture of this criticality, we have combined a fracture mechanics approach to determine joint strength with neutron reflectivity, which provides the moisture distribution near the interface. A well-defined model system, silica glass substrates bonded to a series of polymers based on poly(n-alkyl methacrylate), was utilized to probe the role of the adhesive in a systematic manner. By altering the alkyl chain length, the molecular structure of the polymer can be systematically changed to vary the chemical and physical properties of the adhesive over a relatively wide range. Our findings suggest that the loss of adhesion is dependent on a combination of the build-up of the local water concentration near the interface, interfacial swelling stresses resulting from water absorption, and water-induced weakening of the interfacial bonds. This complexity explains the source of criticality in environmental adhesion failure and could enable design of adhesives to minimize environmental failure.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32166225

RESUMEN

Carbon nanotube (CNT) grafted glass fiber reinforced epoxy nanocomposites (GFRP) present a range of stiffnesses (MPa to GPa) and length scales (µm to nm) at the fiber-matrix interface. The contribution of functionalized CNT networks to the local and bulk polymer dynamics is studied here by using a combination of torsion dynamical mechanical thermal analysis (DMTA), positron annihilation lifetime spectroscopy (PALS), and neutron scattering (NS) measurements. DMTA measurements highlight a reduction in the storage modulus (G') in the rubbery region and an asymmetric broadening of the loss modulus (G″) peak in the α-transition region. NS measurements show a suppressed hydrogen mean-square displacement (MSD) in the presence of glass fibers but a higher hydrogen MSD after grafting functionalized CNTs onto fiber surfaces. PALS measurements show greater free volume characteristics in the presence of the functionalized CNT modified composites, supporting the view that these interface layers increase polymer mobility. While NS and DMTA are sensitive to different modes of chain dynamics, the localization of functionalized nanotubes at the fiber interface is found to affect the distribution of polymer relaxation modes without significantly altering the thermally activated relaxation processes.

5.
J Mech Behav Biomed Mater ; 14: 89-100, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22982958

RESUMEN

Soft elastomeric materials that mimic real soft human tissues are sought to provide realistic experimental devices to simulate the human body's response to blast loading to aid the development of more effective protective equipment. The dynamic mechanical behavior of these materials is often measured using a Kolsky bar because it can achieve both the high strain rates (>100s(-1)) and the large strains (>20%) that prevail in blast scenarios. Obtaining valid results is challenging, however, due to poor dynamic equilibrium, friction, and inertial effects. To avoid these difficulties, an inverse method was employed to determine the dynamic response of a soft, prospective biomimetic elastomer using Kolsky bar tests coupled with high-speed 3D digital image correlation. Individual tests were modeled using finite elements, and the dynamic stiffness of the elastomer was identified by matching the simulation results with test data using numerical optimization. Using this method, the average dynamic response was found to be nearly equivalent to the quasi-static response measured with stress-strain curves at compressive strains up to 60%, with an uncertainty of ±18%. Moreover, the behavior was consistent with the results in stress relaxation experiments and oscillatory tests although the latter were performed at lower strain levels.


Asunto(s)
Materiales Biomiméticos , Fuerza Compresiva , Elastómeros , Ensayo de Materiales/métodos , Análisis de Elementos Finitos , Fricción , Imagenología Tridimensional , Ensayo de Materiales/instrumentación , Estrés Mecánico , Incertidumbre
6.
Langmuir ; 24(17): 9189-93, 2008 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-18683955

RESUMEN

The origins for abrupt adhesion loss at a critical relative humidity (RH) for polymeric adhesives bonded to inorganic surfaces have been explored using a model poly(methyl methacrylate) (PMMA) film on glass. The interfacial and bulk water concentrations within the polymer film as a function of D 2O partial pressure were quantified using neutron reflectivity. Adhesion strength of these PMMA/SiO 2 interfaces under the same conditions was quantified using a shaft loaded blister test. A drop in adhesion strength was observed at a critical RH, and at this same RH, a discontinuity in the bulk moisture concentration occurred. The moisture concentration near the interface was higher than that in the bulk PMMA, and at the critical RH, the breadth of the interfacial water concentration distribution as a function of distance from the SiO 2/PMMA interface increased dramatically. We propose a mechanism for loss of adhesion at a critical RH based upon the interplay between bulk swelling induced stress and weakening of the interfacial bond by moisture accumulation at the PMMA/SiO 2 interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA