Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(5): e1011821, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38781120

RESUMEN

The human immunodeficiency virus (HIV) integrates into the host genome forming latent cellular reservoirs that are an obstacle for cure or remission strategies. Viral transcription is the first step in the control of latency and depends upon the hijacking of the host cell RNA polymerase II (Pol II) machinery by the 5' HIV LTR. Consequently, "block and lock" or "shock and kill" strategies for an HIV cure depend upon a full understanding of HIV transcriptional control. The HIV trans-activating protein, Tat, controls HIV latency as part of a positive feed-forward loop that strongly activates HIV transcription. The recognition of the TATA box and adjacent sequences of HIV essential for Tat trans-activation (TASHET) of the core promoter by host cell pre-initiation complexes of HIV (PICH) has been shown to be necessary for Tat trans-activation, yet the protein composition of PICH has remained obscure. Here, DNA-affinity chromatography was employed to identify the mitotic deacetylase complex (MiDAC) as selectively recognizing TASHET. Using biophysical techniques, we show that the MiDAC subunit DNTTIP1 binds directly to TASHET, in part via its CTGC DNA motifs. Using co-immunoprecipitation assays, we show that DNTTIP1 interacts with MiDAC subunits MIDEAS and HDAC1/2. The Tat-interacting protein, NAT10, is also present in HIV-bound MiDAC. Gene silencing revealed a functional role for DNTTIP1, MIDEAS, and NAT10 in HIV expression in cellulo. Furthermore, point mutations in TASHET that prevent DNTTIP1 binding block the reactivation of HIV by latency reversing agents (LRA) that act via the P-TEFb/7SK axis. Our data reveal a key role for MiDAC subunits DNTTIP1, MIDEAS, as well as NAT10, in Tat-activated HIV transcription and latency. DNTTIP1, MIDEAS and NAT10 emerge as cell cycle-regulated host cell transcription factors that can control activated HIV gene expression, and as new drug targets for HIV cure strategies.


Asunto(s)
Regulación Viral de la Expresión Génica , Infecciones por VIH , VIH-1 , Regiones Promotoras Genéticas , Latencia del Virus , Humanos , VIH-1/genética , VIH-1/fisiología , Infecciones por VIH/virología , Infecciones por VIH/metabolismo , Infecciones por VIH/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Transcripción Viral
2.
Proteomics ; 24(5): e2300162, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37775337

RESUMEN

Acute kidney injury (AKI) manifests as a major health concern, particularly for the elderly. Understanding AKI-related proteome changes is critical for prevention and development of novel therapeutics to recover kidney function and to mitigate the susceptibility for recurrent AKI or development of chronic kidney disease. In this study, mouse kidneys were subjected to ischemia-reperfusion injury, and the contralateral kidneys remained uninjured to enable comparison and assess injury-induced changes in the kidney proteome. A ZenoTOF 7600 mass spectrometer was optimized for data-independent acquisition (DIA) to achieve comprehensive protein identification and quantification. Short microflow gradients and the generation of a deep kidney-specific spectral library allowed for high-throughput, comprehensive protein quantification. Upon AKI, the kidney proteome was completely remodeled, and over half of the 3945 quantified protein groups changed significantly. Downregulated proteins in the injured kidney were involved in energy production, including numerous peroxisomal matrix proteins that function in fatty acid oxidation, such as ACOX1, CAT, EHHADH, ACOT4, ACOT8, and Scp2. Injured kidneys exhibited severely damaged tissues and injury markers. The comprehensive and sensitive kidney-specific DIA-MS assays feature high-throughput analytical capabilities to achieve deep coverage of the kidney proteome, and will serve as useful tools for developing novel therapeutics to remediate kidney function.


Asunto(s)
Lesión Renal Aguda , Proteómica , Humanos , Ratones , Animales , Anciano , Proteoma , Regulación hacia Abajo , Riñón
3.
Nat Methods ; 14(9): 921-927, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28825704

RESUMEN

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is the main method for high-throughput identification and quantification of peptides and inferred proteins. Within this field, data-independent acquisition (DIA) combined with peptide-centric scoring, as exemplified by the technique SWATH-MS, has emerged as a scalable method to achieve deep and consistent proteome coverage across large-scale data sets. We demonstrate that statistical concepts developed for discovery proteomics based on spectrum-centric scoring can be adapted to large-scale DIA experiments that have been analyzed with peptide-centric scoring strategies, and we provide guidance on their application. We show that optimal tradeoffs between sensitivity and specificity require careful considerations of the relationship between proteins in the samples and proteins represented in the spectral library. We propose the application of a global analyte constraint to prevent the accumulation of false positives across large-scale data sets. Furthermore, to increase the quality and reproducibility of published proteomic results, well-established confidence criteria should be reported for the detected peptide queries, peptides and inferred proteins.


Asunto(s)
Interpretación Estadística de Datos , Ensayos Analíticos de Alto Rendimiento/métodos , Espectrometría de Masas/métodos , Mapeo Peptídico/métodos , Proteínas/química , Análisis de Secuencia de Proteína/métodos , Simulación por Computador , Modelos Estadísticos , Proteínas/análisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
4.
J Proteome Res ; 18(5): 2270-2278, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30990720

RESUMEN

Protein citrullination (or deimination), an irreversible post-translational modification, has been implicated in several physiological and pathological processes, including gene expression regulation, apoptosis, rheumatoid arthritis, and Alzheimer's disease. Several research studies have been carried out on citrullination under many conditions. However, until now, challenges in sample preparation and data analysis have made it difficult to confidently identify a citrullinated protein and assign the citrullinated site. To overcome these limitations, we generated a mouse hyper-citrullinated spectral library and set up coordinates to confidently identify and validate citrullinated sites. Using this workflow, we detect a four-fold increase in citrullinated proteome coverage across six mouse organs compared with the current state-of-the art techniques. Our data reveal that the subcellular distribution of citrullinated proteins is tissue-type-dependent and that citrullinated targets are involved in fundamental physiological processes, including the metabolic process. These data represent the first report of a hyper-citrullinated library for the mouse and serve as a central resource for exploring the role of citrullination in this organism.


Asunto(s)
Citrulina/metabolismo , Redes y Vías Metabólicas/fisiología , Biblioteca de Péptidos , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Cromatografía Liquida , Biología Computacional/métodos , Riñón/química , Riñón/metabolismo , Hígado/química , Hígado/metabolismo , Pulmón/química , Pulmón/metabolismo , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Muramidasa/química , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Miocardio/química , Miocardio/metabolismo , Especificidad de Órganos , Péptidos/química , Desiminasas de la Arginina Proteica/química
5.
J Proteome Res ; 17(1): 420-428, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29083196

RESUMEN

Sample preparation for protein quantification by mass spectrometry requires multiple processing steps including denaturation, reduction, alkylation, protease digestion, and peptide cleanup. Scaling these procedures for the analysis of numerous complex biological samples can be tedious and time-consuming, as there are many liquid transfer steps and timed reactions where technical variations can be introduced and propagated. We established an automated sample preparation workflow with a total processing time for 96 samples of 5 h, including a 2 h incubation with trypsin. Peptide cleanup is accomplished by online diversion during the LC/MS/MS analysis. In a selected reaction monitoring (SRM) assay targeting 6 plasma biomarkers and spiked ß-galactosidase, mean intraday and interday cyclic voltammograms (CVs) for 5 serum and 5 plasma samples over 5 days were <20%. In a highly multiplexed SRM assay targeting more than 70 proteins, 90% of the transitions from 6 plasma samples repeated on 3 separate days had total CVs below 20%. Similar results were obtained when the workflow was transferred to a second site: 93% of peptides had CVs below 20%. An automated trypsin digestion workflow yields uniformly processed samples in less than 5 h. Reproducible quantification of peptides was observed across replicates, days, instruments, and laboratory sites, demonstrating the broad applicability of this approach.


Asunto(s)
Espectrometría de Masas/métodos , Proteómica/métodos , Manejo de Especímenes/normas , Automatización , Reproducibilidad de los Resultados , Tripsina/metabolismo , Flujo de Trabajo
6.
Anal Chem ; 87(20): 10222-9, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26398777

RESUMEN

Recent advances in commercial mass spectrometers with higher resolving power and faster scanning capabilities have expanded their functionality beyond traditional data-dependent acquisition (DDA) to targeted proteomics with higher precision and multiplexing. Using an orthogonal quadrupole time-of flight (QqTOF) LC-MS system, we investigated the feasibility of implementing large-scale targeted quantitative assays using scheduled, high resolution multiple reaction monitoring (sMRM-HR), also referred to as parallel reaction monitoring (sPRM). We assessed the selectivity and reproducibility of PRM, also referred to as parallel reaction monitoring, by measuring standard peptide concentration curves and system suitability assays. By evaluating up to 500 peptides in a single assay, the robustness and accuracy of PRM assays were compared to traditional SRM workflows on triple quadrupole instruments. The high resolution and high mass accuracy of the full scan MS/MS spectra resulted in sufficient selectivity to monitor 6-10 MS/MS fragment ions per target precursor, providing flexibility in postacquisition assay refinement and optimization. The general applicability of the sPRM workflow was assessed in complex biological samples by first targeting 532 peptide precursor ions in a yeast lysate, and then 466 peptide precursors from a previously generated candidate list of differentially expressed proteins in whole cell lysates from E. coli. Lastly, we found that sPRM assays could be rapidly and efficiently developed in Skyline from DDA libraries when acquired on the same QqTOF platform, greatly facilitating their successful implementation. These results establish a robust sPRM workflow on a QqTOF platform to rapidly transition from discovery analysis to highly multiplexed, targeted peptide quantitation.


Asunto(s)
Espectrometría de Masas/métodos , Péptidos/análisis , Programas Informáticos , Animales , Caenorhabditis elegans/citología , Cromatografía Líquida de Alta Presión , Escherichia coli/citología , Saccharomyces cerevisiae/citología , Factores de Tiempo
7.
Nat Commun ; 15(1): 5114, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879593

RESUMEN

The global scientific response to COVID 19 highlighted the urgent need for increased throughput and capacity in bioanalytical laboratories, especially for the precise quantification of proteins that pertain to health and disease. Acoustic ejection mass spectrometry (AEMS) represents a much-needed paradigm shift for ultra-fast biomarker screening. Here, a quantitative AEMS assays is presented, employing peptide immunocapture to enrich (i) 10 acute phase response (APR) protein markers from plasma, and (ii) SARS-CoV-2 NCAP peptides from nasopharyngeal swabs. The APR proteins were quantified in 267 plasma samples, in triplicate in 4.8 h, with %CV from 4.2% to 10.5%. SARS-CoV-2 peptides were quantified in triplicate from 145 viral swabs in 10 min. This assay represents a 15-fold speed improvement over LC-MS, with instrument stability demonstrated across 10,000 peptide measurements. The combination of speed from AEMS and selectivity from peptide immunocapture enables ultra-high throughput, reproducible quantitative biomarker screening in very large cohorts.


Asunto(s)
Biomarcadores , COVID-19 , Espectrometría de Masas , SARS-CoV-2 , Humanos , Biomarcadores/sangre , COVID-19/diagnóstico , COVID-19/virología , COVID-19/sangre , SARS-CoV-2/inmunología , Espectrometría de Masas/métodos , Péptidos , Proteínas de la Nucleocápside de Coronavirus/análisis , Fosfoproteínas
8.
J Am Soc Mass Spectrom ; 34(10): 2199-2210, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37694881

RESUMEN

Protein post-translational modifications (PTMs) are crucial and dynamic players in a large variety of cellular processes and signaling. Proteomic technologies have emerged as the method of choice to profile PTMs. However, these analyses remain challenging due to potential low PTM stoichiometry, the presence of multiple PTMs per proteolytic peptide, PTM site localization of isobaric peptides, and neutral losses. Collision-induced dissociation (CID) is commonly used to characterize PTMs, but the application of collision energy can lead to neutral losses and incomplete peptide sequencing for labile PTM groups. In this study, we assessed the performance of an alternative fragmentation, electron activated dissociation (EAD), to characterize, site localize, and quantify peptides with labile modifications in comparison to CID, both operated on a recently introduced fast-scanning quadrupole-time-of-flight (QqTOF) mass spectrometer. We analyzed biologically relevant phosphorylated, succinylated, malonylated, and acetylated synthetic peptides using targeted parallel reaction monitoring (PRM or MRMHR) assays. We report that electron-based fragmentation preserves the malonyl group from neutral losses. The novel tunable EAD kinetic energy maintained labile modification integrity and provided better peptide sequence coverage with strong PTM-site localization fragment ions. Activation of a novel trap-and-release technology significantly improves the duty cycle and provided significant MS/MS sensitivity gains by an average of 6-11-fold for EAD analyses. Evaluation of the quantitative EAD PRM workflows revealed high reproducibility with coefficients of variation of ∼2-7%, as well as very good linearity and quantification accuracy. This novel workflow combining EAD and trap-and-release technology provides high sensitivity, alternative fragmentation information to achieve confident PTM characterization and quantification.


Asunto(s)
Electrones , Espectrometría de Masas en Tándem , Reproducibilidad de los Resultados , Proteómica/métodos , Proteínas/química , Procesamiento Proteico-Postraduccional , Péptidos/química
9.
bioRxiv ; 2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36865241

RESUMEN

Acute kidney injury (AKI) manifests as a major health concern, particularly for the elderly. Understanding AKI-related proteome changes is critical for prevention and development of novel therapeutics to recover kidney function and to mitigate the susceptibility for recurrent AKI or development of chronic kidney disease. In this study, mouse kidneys were subjected to ischemia-reperfusion injury, and the contralateral kidneys remained uninjured to enable comparison and assess injury-induced changes in the kidney proteome. A fast-acquisition rate ZenoTOF 7600 mass spectrometer was introduced for data-independent acquisition (DIA) for comprehensive protein identification and quantification. Short microflow gradients and the generation of a deep kidney-specific spectral library allowed for high-throughput, comprehensive protein quantification. Upon AKI, the kidney proteome was completely remodeled, and over half of the 3,945 quantified protein groups changed significantly. Downregulated proteins in the injured kidney were involved in energy production, including numerous peroxisomal matrix proteins that function in fatty acid oxidation, such as ACOX1, CAT, EHHADH, ACOT4, ACOT8, and Scp2. Injured mice exhibited severely declined health. The comprehensive and sensitive kidney-specific DIA assays highlighted here feature high-throughput analytical capabilities to achieve deep coverage of the kidney proteome and will serve as useful tools for developing novel therapeutics to remediate kidney function.

10.
Proteomics ; 11(2): 183-92, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21204246

RESUMEN

In many biological applications such as epitope discovery or drug metabolism studies, the detection of naturally processed exogenous proteins (e.g. vaccines or peptide therapeutics) and their metabolites is frequently complicated by the presence of a complex endogenous mixture of closely related or even identical compounds. We describe a method that incorporates stable isotope labelling of the protein of interest, allowing the selective screening of the intact molecule and all metabolites using a modified precursor ion scan. This method involves monitoring the low-molecular-weight fragment ions produced during MS/MS that distinguish isotopically labelled peptides from related endogenous compounds. All isotopically labelled peptides can be selected using this method. The technique makes no assumptions about the processed or post-translational state of the peptide, and hence can selectively screen out modified peptides that would otherwise be missed by single reaction monitoring approaches. This method does not replace single reaction monitoring or regular precursor scanning techniques; instead, it is a method that can be used when the assumptions required for the former two techniques cannot be predicted. The potential for this technique to be used in metabolism and pharmacokinetic experiments is discussed with specific examples looking at the metabolism of α-synuclein in serum and the brain.


Asunto(s)
Péptidos/análisis , Proteínas/análisis , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Animales , Química Encefálica , Marcaje Isotópico , Ratones , Datos de Secuencia Molecular , Isótopos de Nitrógeno/análisis , Péptidos/metabolismo , Proteínas/metabolismo , alfa-Sinucleína/análisis , alfa-Sinucleína/sangre
11.
Proteomics ; 11(1): 33-41, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21182192

RESUMEN

The Cytochrome P450 (CYP) proteins are a family of membrane bound proteins that function as a major metabolizing enzyme in the human body. Quantification of CYP induction is critical in determining the disposition, safety and efficacy of drugs in humans. Described is a gel-free, high-throughput LC-MS approach to quantitate the CYP isoforms 1A2, 2B6, 3A4 and 3A5 by measuring isoform specific peptides released by enzymatic digestion of the hepatocyte incubations. The method uses synthetic stable isotope-labeled peptides as internal standards and allows both relative and absolute quantification to be performed from hepatic microsomal preparations. CYP protein determined by this LC-MS method correlated well with the mRNA and activity for induced levels of CYP1A2, CYP2B6 and CYP3A4. Interestingly, a small fold change was observed for the induction of 3A5 with phenobarbital. The results were reproducible with an average CV less then 10% for repeat analysis of the sample. This LC-MS method offers a robust assay for CYP protein quantitation for use in CYP induction assays.


Asunto(s)
Cromatografía Liquida/métodos , Sistema Enzimático del Citocromo P-450/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Células Cultivadas , Humanos , Microsomas Hepáticos/metabolismo , Isoformas de Proteínas/metabolismo
12.
Mol Cell Proteomics ; 7(4): 750-67, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18304949

RESUMEN

Elucidating the complex combinations of growth factors and signaling molecules that maintain pluripotency or, alternatively, promote the controlled differentiation of human embryonic stem cells (hESCs) has important implications for the fundamental understanding of human development, devising cell replacement therapies, and cancer cell biology. hESCs are commonly grown on irradiated mouse embryonic fibroblasts (MEFs) or in conditioned medium from MEFs. These culture conditions interfere with many experimental conclusions and limit the ability to perform conclusive proteomics studies. The current investigation avoided the use of MEFs or MEF-conditioned medium for hESC culture, allowing global proteomics analysis without these confounding conditions, and elucidated neural cell-specific signaling pathways involved in noggin-induced hESC differentiation. Based on these analyses, we propose the following early markers of hESC neural differentiation: collapsin response mediator proteins 2 and 4 and the nuclear autoantigenic sperm protein as a marker of pluripotent hESCs. We then developed a directed mass spectrometry assay using multiple reaction monitoring (MRM) to identify and quantify these markers and in addition the epidermal ectoderm marker cytokeratin-8. Analysis of global proteomics, quantitative RT-PCR, and MRM data led to testing the isoform interference hypothesis where redundant peptides dilute quantification measurements of homologous proteins. These results show that targeted MRM analysis on non-redundant peptides provides more exact quantification of homologous proteins. This study describes the facile transition from discovery proteomics to targeted MRM analysis and allowed us to identify and verify several potential biomarkers for hESCs during noggin-induced neural and BMP4-induced epidermal ectoderm differentiation.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/metabolismo , Proteínas/análisis , Proteómica/métodos , Secuencia de Aminoácidos , Biomarcadores/análisis , Biomarcadores/metabolismo , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/farmacología , Proteínas Portadoras/farmacología , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Epidérmicas , Epidermis/química , Epidermis/metabolismo , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Neuronas/química , Neuronas/citología , Neuronas/metabolismo , Péptidos/análisis , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Proteínas/genética , Proteínas/metabolismo , ARN Mensajero/análisis , ARN Mensajero/metabolismo
13.
Proteomics ; 9(12): 3328-40, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19504495

RESUMEN

The peptide-based quantitation accuracy and precision of LC-ESI (QSTAR Elite) and LC-MALDI (4800 MALDI TOF/TOF) were compared by analyzing identical Escherichia coli tryptic digests containing iTRAQ-labeled peptides of defined abundances (1:1, 2.5:1, 5:1, and 10:1). Only 51.4% of QSTAR spectra were used for quantitation by ProteinPilot Software versus 66.7% of LC-MALDI spectra. The average protein sequence coverages for LC-ESI and LC-MALDI were 24.0 and 18.2% (14.9 and 8.4 peptides per protein), respectively. The iTRAQ-based expression ratios determined by ProteinPilot from the 57 467 ESI-MS/MS and 26 085 MALDI-MS/MS spectra were analyzed for measurement accuracy and reproducibility. When the relative abundances of peptides within a sample were increased from 1:1 to 10:1, the mean ratios calculated on both instruments differed by only 0.7-6.7% between platforms. In the 10:1 experiment, up to 64.7% of iTRAQ ratios from LC-ESI MS/MS spectra failed S/N thresholds and were excluded from quantitation, while only 0.1% of the equivalent LC-MALDI iTRAQ ratios were rejected. Re-analysis of an archived LC-MALDI sample set stored for 5 months generated 3715 MS/MS spectra for quantitation, compared with 3845 acquired originally, and the average ratios differed by only 3.1%. Overall, MS/MS-based peptide quantitation performance of offline LC-MALDI was comparable with on-line LC-ESI, which required threefold less time. However, offline LC-MALDI allows the re-analysis of archived HPLC-separated samples.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Proteínas de Escherichia coli/análisis , Péptidos/análisis
14.
Methods Mol Biol ; 1550: 223-233, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28188533

RESUMEN

Data-independent acquisition is a powerful mass spectrometry technique that enables comprehensive MS and MS/MS analysis of all detectable species, providing an information rich data file that can be mined deeply. Here, we describe how to acquire high-quality SWATH® Acquisition data to be used for large quantitative proteomic studies. We specifically focus on using variable sized Q1 windows for acquisition of MS/MS data for generating higher specificity quantitative data.


Asunto(s)
Biología Computacional/métodos , Proteómica/métodos , Programas Informáticos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Cromatografía Liquida , Proteómica/normas , Sensibilidad y Especificidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Estadística como Asunto , Espectrometría de Masas en Tándem/métodos
15.
Nat Commun ; 8(1): 291, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28827567

RESUMEN

Quantitative proteomics employing mass spectrometry is an indispensable tool in life science research. Targeted proteomics has emerged as a powerful approach for reproducible quantification but is limited in the number of proteins quantified. SWATH-mass spectrometry consists of data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics (accuracy, sensitivity, and selectivity) of targeted proteomics at large scale. While previous SWATH-mass spectrometry studies have shown high intra-lab reproducibility, this has not been evaluated between labs. In this multi-laboratory evaluation study including 11 sites worldwide, we demonstrate that using SWATH-mass spectrometry data acquisition we can consistently detect and reproducibly quantify >4000 proteins from HEK293 cells. Using synthetic peptide dilution series, we show that the sensitivity, dynamic range and reproducibility established with SWATH-mass spectrometry are uniformly achieved. This study demonstrates that the acquisition of reproducible quantitative proteomics data by multiple labs is achievable, and broadly serves to increase confidence in SWATH-mass spectrometry data acquisition as a reproducible method for large-scale protein quantification.SWATH-mass spectrometry consists of a data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics on the scale of thousands of proteins. Here, using data generated by eleven groups worldwide, the authors show that SWATH-MS is capable of generating highly reproducible data across different laboratories.


Asunto(s)
Ensayos de Aptitud de Laboratorios/métodos , Espectrometría de Masas/métodos , Proteoma/metabolismo , Proteómica/métodos , Células HEK293 , Humanos , Laboratorios/normas , Laboratorios/estadística & datos numéricos , Reproducibilidad de los Resultados
16.
Dalton Trans ; 42(9): 3151-5, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23250011

RESUMEN

Metal ion binding to a previously reported variant of horse heart myoglobin (Lys45Glu/Lys63Glu) with a metal ion binding site on the surface of the protein that is adjacent to the haem binding site has been shown to influence ligand binding and electrochemical properties of the protein. For example, the K(d) (µM) for binding of azide to this variant decreases from 277 ± 9 to 32 ± 3 following addition of a saturating concentration of Mn(2+) (the value for the wild-type protein under the same conditions is 26 ± 1). Similarly, the midpoint reduction potential E(m) (mV vs. standard hydrogen electrode) increases from 9 to 40 in the presence of a saturating concentration of Mn(2+) (the value for the wild-type protein under the same conditions is 45 ± 2). These results demonstrate the potential value of engineered metal ion binding sites as a means of regulating the functional properties of even simple haem proteins.


Asunto(s)
Azidas/metabolismo , Caballos , Metales/metabolismo , Miocardio , Mioglobina/química , Mioglobina/metabolismo , Ingeniería de Proteínas , Animales , Sitios de Unión , Hemo/metabolismo , Modelos Moleculares , Mioglobina/genética , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Electricidad Estática
17.
J Proteomics ; 75(3): 857-67, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22008608

RESUMEN

Shotgun proteomics is capable of characterizing differences in both protein quality and quantity, and has been applied in various biomedical applications. Unfortunately, the high complexity and dynamic range of proteins in studied samples, clinical in particular, often hinders the identification of relevant proteins. Indeed, information-rich, low abundance proteins often remain undetected, whereas repeatedly reported altered concentrations in high abundance proteins are often ambiguous and insignificant. Several techniques have therefore been developed to overcome this obstacle and provide a deeper insight into the proteome. Here we report a novel approach, which enables iTRAQ reagent quantitation of peptides fractionated based on presence of a cysteine residue (thus CysTRAQ). For the first time, we prove that iTRAQ quantitation is fully compatible with cysteinyl peptide enrichment and is not influenced by the fractionation process. Moreover, the employment of the method combined with high-resolution TripleTOF 5600 mass spectrometer for very fast MS/MS acquisition in human amniotic fluid analysis significantly increased the number of identified proteins, which were simultaneously quantified owing to the introduction of iTRAQ labeling. We herein show that CysTRAQ is a robust and straightforward method with potential application in quantitative proteomics experiments, i.e. as an alternative to the ICAT reagent approach.


Asunto(s)
Líquido Amniótico/metabolismo , Proteínas Bacterianas/metabolismo , Francisella tularensis/metabolismo , Péptidos/metabolismo , Proteínas Gestacionales/metabolismo , Embarazo/metabolismo , Proteoma/metabolismo , Adulto , Femenino , Humanos , Espectrometría de Masas/métodos , Péptidos/análisis , Proteínas Gestacionales/análisis , Proteoma/análisis , Proteómica/métodos
18.
Mol Cell Proteomics ; 6(9): 1638-55, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17533153

RESUMEN

The Paragon Algorithm, a novel database search engine for the identification of peptides from tandem mass spectrometry data, is presented. Sequence Temperature Values are computed using a sequence tag algorithm, allowing the degree of implication by an MS/MS spectrum of each region of a database to be determined on a continuum. Counter to conventional approaches, features such as modifications, substitutions, and cleavage events are modeled with probabilities rather than by discrete user-controlled settings to consider or not consider a feature. The use of feature probabilities in conjunction with Sequence Temperature Values allows for a very large increase in the effective search space with only a very small increase in the actual number of hypotheses that must be scored. The algorithm has a new kind of user interface that removes the user expertise requirement, presenting control settings in the language of the laboratory that are translated to optimal algorithmic settings. To validate this new algorithm, a comparison with Mascot is presented for a series of analogous searches to explore the relative impact of increasing search space probed with Mascot by relaxing the tryptic digestion conformance requirements from trypsin to semitrypsin to no enzyme and with the Paragon Algorithm using its Rapid mode and Thorough mode with and without tryptic specificity. Although they performed similarly for small search space, dramatic differences were observed in large search space. With the Paragon Algorithm, hundreds of biological and artifact modifications, all possible substitutions, and all levels of conformance to the expected digestion pattern can be searched in a single search step, yet the typical cost in search time is only 2-5 times that of conventional small search space. Despite this large increase in effective search space, there is no drastic loss of discrimination that typically accompanies the exploration of large search space.


Asunto(s)
Biología Computacional/métodos , Espectrometría de Masas/métodos , Proteómica/métodos , Algoritmos , Secuencia de Aminoácidos , Animales , Bovinos , Computadores , Humanos , Modelos Estadísticos , Datos de Secuencia Molecular , Péptidos/química , Probabilidad , Temperatura , Tripsina/química
19.
Mol Cell Proteomics ; 5(4): 573-88, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16332733

RESUMEN

Quantitative LC-MS/MS assays were designed for tryptic peptides representing 53 high and medium abundance proteins in human plasma using a multiplexed multiple reaction monitoring (MRM) approach. Of these, 47 produced acceptable quantitative data, demonstrating within-run coefficients of variation (CVs) (n = 10) of 2-22% (78% of assays had CV <10%). A number of peptides gave CVs in the range 2-7% in five experiments (10 replicate runs each) continuously measuring 137 MRMs, demonstrating the precision achievable in complex digests. Depletion of six high abundance proteins by immunosubtraction significantly improved CVs compared with whole plasma, but analytes could be detected in both sample types. Replicate digest and depletion/digest runs yielded correlation coefficients (R(2)) of 0.995 and 0.989, respectively. Absolute analyte specificity for each peptide was demonstrated using MRM-triggered MS/MS scans. Reliable detection of L-selectin (measured at 0.67 microg/ml) indicates that proteins down to the microg/ml level can be quantitated in plasma with minimal sample preparation, yielding a dynamic range of 4.5 orders of magnitude in a single experiment. Peptide MRM measurements in plasma digests thus provide a rapid and specific assay platform for biomarker validation, one that can be extended to lower abundance proteins by enrichment of specific target peptides (stable isotope standards and capture by anti-peptide antibodies (SISCAPA)).


Asunto(s)
Proteínas Sanguíneas/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Secuencia de Aminoácidos , Cromatografía Liquida , Humanos , Datos de Secuencia Molecular , Mapeo Peptídico , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Proteomics ; 6(6): 1934-47, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16479536

RESUMEN

The development of a novel method for absolute quantification of proteins based on isotope-coded affinity tagging using ICAT reagents is described. The method exploits synthetic peptide standards to determine protein content at the femtomole level in biological samples. The approach is generally applicable to any subset of proteins, but is particularly appropriate for quantitative analysis of multiple, closely related isoforms, and for hydrophobic proteins that are poorly represented in 2-D gels. Relative and absolute quantification techniques are applied to an important group of microsomal metabolic enzymes, the cytochromes P450 (P450), which are critical in determining the disposition, safety and efficacy of drugs in man. Measurement of the P450 induction profile in response to chemicals is a fundamental aspect of drug safety evaluation and is currently achieved by low-throughput methods employing poorly discriminatory antibodies or substrates. Tagging technology is shown to supersede conventional methods for P450 profiling in terms of discriminatory power and throughput, exemplified by the simultaneous detection of distinct induction profiles for cyp2c subfamily members in response to phenobarbitone: cyp2c29 expression, but not cyp2c40 or cyp2c50, was induced threefold by treatment. This technology should abbreviate the drug development pathway, and provide a widely applicable, rapid means of quantifying proteins.


Asunto(s)
Marcadores de Afinidad , Sistema Enzimático del Citocromo P-450/análisis , Perfilación de la Expresión Génica , Marcaje Isotópico , Secuencia de Aminoácidos , Animales , Western Blotting , Secuencia Conservada , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/aislamiento & purificación , Sistema Enzimático del Citocromo P-450/metabolismo , Electroforesis en Gel Bidimensional , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Datos de Secuencia Molecular , Fenobarbital/farmacología , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA